United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Cooling   /   Air Conditioners

Comparison Daikin Emura FTXG20L 20 m² vs Daikin Emura FTXG20L/RXG20L 20 m²

Add to comparison
Daikin Emura FTXG20L 20 m²
Daikin Emura FTXG20L/RXG20L 20 m²
Daikin Emura FTXG20L 20 m²Daikin Emura FTXG20L/RXG20L 20 m²
from $677.44 up to $777.20
Outdated Product
from $817.80 up to $1,666.80
Outdated Product
TOP sellers
Typesplit systemsplit system
Installationwallwall
In box
indoor unit
 
indoor unit
outdoor unit
Performance
Operating modescooling/heating/dehumidification/ventilationcooling/heating/dehumidification/ventilation
Recommended room area20 m²20 m²
Power consumption (cooling/heating)501/760 W
Cooling capacity2000 W2000 W
Heating capacity2500 W2500 W
Air flow612 m³/h612 m³/h
Noise level (max/min)40/19 dB40/19 dB
Efficiency
Cooling EER4.59
Heating COP5
Seasonal cooling SEER8.52
Seasonal heating SCOP4.6
Energy efficiency EER (cooling)A
Energy efficiency COP (heating)A
Energy efficiency SEER (cooling)A+++
Energy efficiency SCOP (heating)A++
Features
Functions
inverter
automode
timer
night mode
auto restart
motion sensor
vertical blinds drive
self-diagnosis
inverter
automode
timer
night mode
auto restart
motion sensor
vertical blinds drive
self-diagnosis
Specs
Wi-Fi module connection
Refrigerant typeR410АR410А
Min. T for cooling mode-10 °C
Min. T for heating mode-15 °C
Filters
 
antibacterial
deodorizing (charcoal)
catalytic
antibacterial
deodorizing (charcoal)
General specs
Indoor unit dimensions (WxHxD)
998x303x212 mm /weight - 12 kg/
998x303x212 mm /weight - 12 kg/
Dimensions of window/outdoor unit (WxHxD)
765x550x285 mm /weight — 35 kg/
Color
Added to E-Catalogmay 2015march 2014

In box

A set of components included in the delivery of the air conditioner.

This parameter is indicated only for split and multi split systems (see "Type") — other types of air conditioners are made as single units, and there is simply no need to specify the complete set for them. Split system can be supplied both in a complete set, and in separate units (both indoor and outdoor). Among traditional split systems, the first option is the most popular: it is most convenient to buy such a solution as a ready-made kit, and the purchase of a separate unit is required if one of the original units breaks down. But the components of multi split air conditioners, on the contrary, are most often sold separately — this makes it easy to assemble such a system for a specific situation by separately purchasing an outdoor unit and the required number of indoor ones.

Power consumption (cooling/heating)

Power consumption of the air conditioner in cooling and heating mode; for models without a heating mode, only one number is given. This parameter should not be confused with the effective capacity of the air conditioner. Effective capacity is the amount of heat that the unit can "pump" into the environment or the room. This item also indicates the amount of electricity consumed by the device from the network.

In all air conditioners, the power consumption is several times lower than the effective capacity. It is due to the peculiarities of the operation of such units. At the same time, devices with the same efficiency may differ in power consumption. In such cases, the more economical models usually cost more, but with continued use, the difference can quickly pay off with less electricity consumption.

Also, two points related to electrical engineering depend on this nuance. Firstly, power consumption affects power requirements: models up to 3 – 3.5 kW can be connected to a regular outlet, while higher power consumption requires a three-phase connection (see below). Secondly, the power consumption is needed to calculate the load on the mains and the necessary parameters of additional equipment: stabilizers, emergency generators, uninterruptible power supplies, etc.

Cooling EER

Cooling factor EER provided by the air conditioner. It is calculated as the ratio of the useful operating power of the air conditioner in cooling mode to the electricity consumption. For example, a device that delivers 6 kW of operating power in cooling mode and consumes 2 kW will have an EER 6/2 = 3.

The higher this indicator, the more economical the air conditioner is and the higher its cooling energy efficiency class (see below). Each class has its clear requirements for EER.

It is worth noting that this indicator is considered not very reliable, and in the European Union another coefficient has been introduced that is closer to practice — SEER. See Energy efficiency SEER (cooling) for more details.

Heating COP

The heating coefficient COP provided by the air conditioner. It is calculated as the ratio of the heat output of the air conditioner in heating mode to the electricity consumption. For example, if a device consumes 2 kW and produces 5 kW of thermal power, then the COP will be 5/2 = 2.5.

The higher this indicator, the more economical the air conditioner is and the higher its energy efficiency class when heating (see below). Each class has its own clear COP requirements.

Note that COP values are usually higher than the values of another important coefficient — EER (see above). It is due to the technical features of the air conditioners.

It is also worth mentioning that since 2013, a more advanced and closer-to-practice coefficient, SCOP, has been put into use in Europe. See "Energy efficiency SCOP (heating)" for more details.

Seasonal cooling SEER

The seasonal SEER cooling factor provided by the air conditioner.

The meaning of this parameter is similar to the cooling coefficient — EER (see above): we are talking about the ratio of useful power to spend, and the higher the coefficient, the more efficient the device is. The difference between these parameters lies in the measurement method: EER is measured for strictly standard conditions (outside temperature +35 °C, workload 100%), while SEER is closer to reality — it takes into account seasonal temperature fluctuations (for Europe) and some other specific points, such as the increased efficiency of inverter compressors. Therefore, since 2013, it is customary to use SEER as the main parameter in the EU; this parameter was also adopted for air conditioners supplied to other countries with a similar climate.

Seasonal heating SCOP

Seasonal heating coefficient SCOP provided by the air conditioner.

Like the COP (see above), this parameter describes the overall efficiency of the air conditioner in heating operation and is calculated by the formula: thermal (useful) power divided by electricity consumption. The higher the coefficient, the more efficient the device, respectively. And the difference between COP and SCOP is that COP is measured under strictly standard conditions (outside temperature +7 °C, full workload), and SCOP takes into account seasonal temperature fluctuations (for Europe), changes in air conditioner operating modes, the presence of an inverter and some other options. Thanks to this, SCOP is closer to real indicators, and since 2013 this coefficient has been taken as the main one in the territory of the European Union. However, this parameter is also used for air conditioners supplied to other countries with a similar climate.

Energy efficiency EER (cooling)

The general energy efficiency class that the air conditioner complies with in cooling mode.

This parameter is indicated by letters from A (highest efficiency) and beyond. It is directly related to the value of the EER factor (see "Cooling EER"): each energy efficiency class corresponds to a certain range of factors (for example, B — from 3.0 to 3.2). Specific coefficient values for each class can be found in special tables; here we note that more efficient air conditioners are more expensive, but this difference can pay off due to less electricity consumption.

Energy efficiency COP (heating)

The general energy efficiency class that the air conditioner corresponds to when operating in heating.

This parameter is indicated by letters from A (highest efficiency) and beyond. It is directly related to the value of the COP coefficient (see "Heating COP"): each energy efficiency class corresponds to a certain range of coefficients (for example, C — from 3.2 to 3.4). Specific coefficient values for each class can be found in special tables; here we note that more efficient air conditioners are more expensive, but this difference can pay off due to less electricity consumption.

Energy efficiency SEER (cooling)

The seasonal energy efficiency class that the air conditioner complies with in cooling operation. Initially, this parameter was designated in letters from A(the most economical indicator) to G (the most expensive); however, more efficient classes than A appeared later — A+, A++ and A+++(the more pluses, the higher the energy efficiency).

This parameter is directly related to the value of the SEER coefficient. For more information on this factor and how it differs from the EER, see "Seasonal Cooling SEER Ratio". Here we note that each class has its range of SEER values; detailed correspondence tables can be found in special sources.

Other things being equal, more energy-efficient air conditioners are more expensive, but the difference can be recouped as it uses less electicity.
Daikin Emura FTXG20L/RXG20L often compared