Dark mode
United Kingdom
Catalog   /   Camping & Fishing   /   Fishing   /   Fish Finders

Comparison Lucky Fishfinder FF718LiT ICE vs Lucky Fishfinder FF718LiDT

Add to comparison
Lucky Fishfinder FF718LiT ICE
Lucky Fishfinder FF718LiDT
Lucky Fishfinder FF718LiT ICELucky Fishfinder FF718LiDT
Outdated ProductOutdated Product
TOP sellers
Typefish finderfish finder
Specs
Scan depth100 m35 m
Number of beams of radiation12
Number of frequencies13
Radiation frequency200 kHz83/125/200 kHz
Total radiation angle45 °90 °
Display specs
Display
2.5 "
128x128 px
monochrome
backlight
2 "
128x128 px
monochrome
backlight
Features
Functions
Sound alarm
Determination of the distance to the fish
Indication of symbols in the form of fish
Bottom density determination
Water temperature indicator
Sound alarm
Determination of the distance to the fish
Indication of symbols in the form of fish
Bottom density determination
Water temperature indicator
General
Wireless sensor
Ice fishing sensor
Key backlight
Power source6 V6 V
Dimensions136x74x30 mm
Weight160 g
Added to E-Catalogseptember 2018april 2017

Scan depth

the maximum depth at which the sonar locator (see "Type") is able to operate effectively — in other words, how deep underwater the device is able to "see".

It is worth choosing an echo sounder according to this parameter, taking into account the actual depths at which it is planned to be used. Of course, this does not place a certain margin, but within reasonable limits (15-20%, less). For example, it hardly makes sense to specially take a model with a scanning depth of 200 m for a lake with pits of 30-40 m — such devices are expensive, while there will simply be nowhere to realize their full potential, and a powerful signal can also scare away the fish. But for marine or oceanic applications, a depth of a kilometer or more may be required; the most advanced echo sounders are quite capable of providing it.

Number of beams of radiation

The number of individual beams of radiation emitted by the device with the echo sounder function (see "Type"). The general principle is as follows: the more rays, the more advanced the device is considered and the more additional features it provides. Specific features may be:

— 1. Single- beam echo sounders are the simplest variety; accordingly, one of their key advantages is low cost. On the other hand, the shortcomings of any beam — both narrow and wide — are fully realized in them (for more details, see "Total angle of radiation"), and there is no question of a detailed determination of the position of individual detected objects (for example, fish).

— 2. In models with two beams, these beams most often have a common axis, but differ in coverage angle: one is made narrow, directly for measuring depths, the other is wider, for searching for fish and other individual objects. Thus, this option combines the advantages of beams of large and small widths. However such an echo sounder is not capable of fixing the location of the fish relative to the boat.

— 3. Three- beam echo sounders have all the capabilities of the two-beam echo sounders described above, and in addition, they are also able to determine the location of a fish or other object relative to the boat (right or left).

Number of frequencies

The number of individual radiation frequencies that can be operated by a device with echo sounding function (see "Type").

The features of the frequencies themselves are described in detail below, but here we note that different models may provide different options for distributing frequencies over individual beams (see "Number of radiation beams"). So, in some devices, each beam has its own frequency, in others, individual emitters can be switched, choosing the best option depending on the characteristics of the situation. In general, more frequencies indicate greater versatility, but it significantly affects the price.

Radiation frequency

The frequency(s) of radiation at which the device with the echo sounder function is capable of operating (see "Type").

The higher the frequency, the better the resolution and noise immunity of the device, the better it is suitable for working at high speeds, but the range and coverage suffer. Low-frequency (up to 200 kHz) sensors, on the contrary, "reach" deep and cover a wide angle, but are sensitive to interference and do not work well with fine terrain details and small objects. Accordingly, the first option is considered optimal for shallow depths and high-precision topographic measurements, while the second option is for deep water bodies, as well as for searching for fish and other tasks that require wide coverage.

Models with several radiation beams (see “Number of radiation beams”) often provide different frequencies for individual beams, which allows you to combine the advantages of different options in one device and compensate for their disadvantages.

Total radiation angle

The angle covered during operation by the transducer of the echo sounder (or an instrument with such a function, see "Type").

Technically, the wider the angle, the better the echo sounder is suitable for finding fish and other underwater objects, because. a large coverage area reduces the likelihood of missing prey. On the other hand, to accurately determine the depth, the beam must be as narrow as possible. This is due to the fact that the depth is determined by the maximum protruding point that fell under the beam; thus, if the size of the hole at the bottom is smaller than the spot from the beam, the device simply will not notice this hole. The smaller the angle (and, accordingly, the projection of the beam onto the bottom) — the less likely this phenomenon is.

However, it should be taken into account that all of the above is unambiguously true only for single-beam echo sounders (see "Number of radiation beams"). But multibeam models, usually, combine beams of different widths, thus compensating for the shortcomings of narrow and wide angles. In them, the total radiation angle describes only the dimensions of the space covered by the device.

Display

— Screen size. Diagonal screen size in inches. The larger the screen, the more information can be displayed on it and the more detailed this information can be. On the other hand, this parameter noticeably affects the dimensions of the device, and large screens are expensive, especially since you need the appropriate resolution for normal image quality (see below).

Touch. The presence of a sensor in the design of the display. This feature allows you to control the device by touching the icons on the screen — similar to how it is done in smartphones and tablets. Touch control provides more options than the classic one, using buttons and switches, besides it is more visual — however, such devices are more expensive.

— Display resolution. Display size in dots (pixels) horizontally and vertically. The higher the resolution, the more detailed image the screen is able to produce, the smaller objects can be clearly displayed on it and the more comfortable viewing. At the same time, the specificity of echo sounders is such that too high resolution is not required even for high-end models: for example, modest by the standards of smartphones or tablets 640x480 with a 5" screen are considered quite sufficient even for an advanced device.

— Colour. The ability of a screen to display colours. In this case, the simplest division is used:

Monochrome.... Displays that display information only in shades of one colour. Theoretically, the main colour can be any, but in this case, the vast majority of monochrome screens are black and white. Their advantages are low cost and energy consumption, as well as good visibility in the sun; at the same time, such an image allows you to work with quite a variety of types of data, which is enough even for very advanced echo sounders (see "Type"). However, this variety is not as wide as for colour displays, as a result, for chartplotters (see ibid.), such an image is not suitable — if it is impossible to display different colours, some of the important information on the maps is lost.

Coloured. Screens capable of working with multiple colours. The variety of colours can be quite small, but the image still turns out to be more informative than black and white: different colours can indicate different depths on the map, water temperature changes, etc. Due to this, this type of display is found in all types of navigation devices (see above). Its main disadvantage can be called a higher cost than that of monochrome screens.

— Backlight. The screen has its own backlight system. This feature makes the display independent of ambient light and allows you to see the information on it even in complete darkness. At the same time, the backlight increases power consumption, which is important during long-term operation from an autonomous source (for example, a boat battery). Therefore, it can be turned off.

Wireless sensor

The presence of a wireless sensor in the scope of delivery of the echo sounder.

The main features and conveniences of such sensors are obvious from the name: to install them, you do not need to bother with laying and fixing wires, it is enough to fix the module in the required place and turn on the connection. On the other hand, wireless sensors are noticeably more expensive than wired ones, and their operation requires their own power supplies; the state of these sources (accumulators or batteries) must be monitored separately so that the sensor does not turn off at the most inopportune moment.

Note that there is a specific type of device with a similar function: echo sounders that do not have displays at all and are connected to a mobile device (smartphone or tablet) during operation. In terms of functionality, such models are often not inferior to full-fledged echo sounders, while being much cheaper.

Ice fishing sensor

The presence of a sensor for winter fishing in the scope of delivery of the device with the function of an echo sounder (see "Type").

This feature allows the device to be used on ice-covered water bodies. Usually, the sensor itself is made in the form of a float and is designed to be placed directly in the hole. At the same time, some models are also able to “see” directly through the ice to some extent, but this function is usually auxiliary and is intended more for a general assessment of the depth, and not for a detailed display of the situation; and the working depth during such work is less than the regular one. There are two things that are common to all winter sensors: the absence of mounts found in conventional sensors (on the bottom of the boat, transom, etc.), as well as increased resistance to low temperatures.

Key backlight

The presence of a key illumination system in the design of the device.

The role of this function is similar to the backlight of the display (see "Display"): it makes the keys visible even in complete darkness, allowing you to accurately control the device's functions. Yes, even in twilight conditions, the backlight can come in handy — not all buttons have markings that are clearly visible in low light.
Lucky Fishfinder FF718LiDT often compared