United Kingdom
Catalog   /   Computing   /   Components   /   Computer Cooling

Comparison Deepcool ICE EDGE MINI FS V2.0 vs Deepcool GAMMAXX 200T

Add to comparison
Deepcool ICE EDGE MINI FS V2.0
Deepcool GAMMAXX 200T
Deepcool ICE EDGE MINI FS V2.0Deepcool GAMMAXX 200T
from £18.12 
Expecting restock
from £14.99 
Outdated Product
TOP sellers
Main specs
Featuresfor CPUfor CPU
Product typeair coolerair cooler
Fan
Number of fans11
Fan size
80 mm /80x80x25/
120 mm
Bearinghydrodynamichydrodynamic
Min. RPM900 rpm
Max. RPM2200 rpm1600 rpm
Speed controllerauto (PWM)auto (PWM)
Max. air flow25.13 CFM54.25 CFM
Max. TDP100 W100 W
Air flow directionsideways (dispersion)sideways (dispersion)
replaceable
Min noise level18 dB
Noise level25 dB26 dB
Radiator
Heat pipes22
Heatpipe contactstraightstraight
Heatsink materialaluminium/copperaluminium/copper
Plate materialaluminiumaluminium
Socket
AMD AM2/AM3/FM1/FM2
AMD AM4
Intel 775
Intel 1150
Intel 1155/1156
Intel 1151 / 1151 v2
Intel 1200
AMD AM2/AM3/FM1/FM2
AMD AM4
Intel 775
Intel 1150
Intel 1155/1156
Intel 1151 / 1151 v2
Intel 1200
General
Power source3-pin4-pin
Mount typesilicone mountsbilateral (backplate)
Dimensions112x75x119 mm128x71x132 mm
Height119 mm132 mm
Weight276 g361 g
Added to E-Catalogjanuary 2019august 2017

Fan size

The diameter of the fan(s) used in the cooling system.

In general, larger fans are considered more advanced than smaller ones: they allow you to create a powerful air flow at a relatively low speed and low noise level. On the other hand, a large diameter means large dimensions, weight and price. As for specific figures, 40 mm and 60 mm models are considered miniature, 80 mm and 92 mm are medium, 120 mm and 135 / 140 mm are large, and even 200 mm fans are found in the most powerful case systems.

Min. RPM

The lowest speed at which the cooling fan is capable of operating. Specified only for models with speed control (see below).

The lower the minimum speed (with the same maximum) — the wider the speed control range and the more you can slow down the fan when high performance is not needed (such a slowdown allows you to reduce energy consumption and noise level). On the other hand, an extensive range affects the cost accordingly.

Max. RPM

The highest speed at which the cooling system fan is capable of operating; for models without a speed controller (see below), this item indicates the nominal rotation speed. In the "slowest" modern fans, the maximum speed does not exceed 1000 rpm, in the "fastest" it can be up to 2500 rpm and even more.

Note that this parameter is closely related to the fan diameter (see above): the smaller the diameter, the higher the speed must be to achieve the desired airflow values. In this case, the rotation speed directly affects the level of noise and vibration. Therefore, it is believed that the required volume of air is best provided by large and relatively "slow" fans; and it makes sense to use "fast" small models where compactness is crucial. If we compare the speed of models of the same size, then higher speeds have a positive effect on performance, but increase not only the noise level, but also the price and power consumption.

Max. air flow

The maximum airflow that a cooling fan can create; measured in CFM — cubic feet per minute.

The higher the CFM number, the more efficient the fan. On the other hand, high performance requires either a large diameter (which affects the size and cost) or high speed (which increases the noise and vibration levels). Therefore, when choosing, it makes sense not to chase the maximum air flow, but to use special formulas that allow you to calculate the required number of CFM depending on the type and power of the cooled component and other parameters. Such formulas can be found in special sources. As for specific numbers, in the most modest systems, the performance does not exceed 30 CFM, and in the most powerful systems it can be up to 80 CFM and even more.

It is also worth considering that the actual value of the air flow at the highest speed is usually lower than the claimed maximum; see Static Pressure for details.

Min noise level

The lowest noise level produced by the cooling system during operation.

This parameter is indicated only for those models that have capacity control and can operate at reduced power. Accordingly, the minimum noise level is the noise level in the most “quiet” mode, the volume of work, which this model cannot be less than.

These data will be useful, first of all, to those who are trying to reduce the noise level as much as possible and, as they say, “fight for every decibel”. However, it is worth noting here that in many models the minimum values are about 15 dB, and in the quietest — only 10 – 11 dB. This volume is comparable to the rustling of leaves and is practically lost against the background of ambient noise even in a residential area at night, not to mention louder conditions, and the difference between 11 and 18 dB in this case is not significant for human perception. A comparison table for sound starting from 20 dB is given in the "Noise level" section below.

Noise level

The standard noise level generated by the cooling system during operation. Usually, this paragraph indicates the maximum noise during normal operation, without overloads and other "extreme".

Note that the noise level is indicated in decibels, and this is a non-linear value. So it is easiest to evaluate the actual loudness using comparative tables. Here is a table for values found in modern cooling systems:

20 dB — barely audible sound (quiet whisper of a person at a distance of about 1 m, sound background in an open field outside the city in calm weather);
25 dB — very quiet (normal whisper at a distance of 1 m);
30 dB — quiet (wall clock). It is this noise that, according to sanitary standards, is the maximum allowable for constant sound sources at night (from 23.00 to 07.00). This means that if the computer is planned to sit at night, it is desirable that the volume of the cooling system does not exceed this value.
35 dB — conversation in an undertone, sound background in a quiet library;
40 dB — conversation, relatively quiet, but already in full voice. The maximum permissible noise level for residential premises in the daytime, from 7.00 to 23.00, according to sanitary standards. However, even the noisiest cooling systems usually do not reach this indicator, the maximum for such equipment is about 38 – 39 dB.

Power source

Type of power connector for the cooling system. Power is usually output through the motherboard, for this the following connectors are most often used:

3-pin. Three-pin connector; Today it is considered obsolete, but it is still widely used.

4-pin. Plug with 4 pins. Its main advantage is the ability to automatically adjust the rotation speed via PWM (for more details, see "Speed controller").

These two standards are mutually compatible: a 3-pin fan can be connected to a 4-pin connector on the motherboard, and vice versa (unless PWM is available in both cases).

Much less common are options such as 2-pin, installed in some inexpensive fans; 6-pin, used in cooling systems with RGB backlighting, which requires a rather powerful additional power supply; 7-pin and 8-pin, similar in their specifics to a 6-pin connector; as well as power supply via a standard MOLEX plug provided in separate case fans.

Mount type

Latches. The simplest and most convenient type of fastening, in particular due to the fact that it does not require the use of additional tools. Plus, you don't need to remove the motherboard for snap-on installation.

— Double- sided (backplate). This type of fastening is used in the most powerful and, as a result, heavy and large-sized cooling systems. Its feature is the presence of a plate installed on the opposite side of the motherboard — this plate is designed to protect against damage and so that the board does not bend under the weight of the structure.

Bolts. Fastening with classic bolts. It is considered somewhat more reliable than latches (see above), but less convenient, because. You can remove and install the cooling system only with a screwdriver. To date, bolts are mainly used to fasten case fans, as well as cooling systems for RAM and hard drives (see "Type", "Purpose").

Silicone mounts. The main advantage of silicone fasteners is good vibration absorption, which significantly reduces the noise level compared to similar systems using other types of fasteners. On the other hand, silicone is somewhat less reliable than bolts, so both types of fasteners are usually supplied in the kit, and the user chooses which ones to use.

— Adhesive tape. Fastening with adhesive tape (adhesi...ve tape), usually double-sided. The main advantages of this mount are ease of use and compactness. On the other hand, it is difficult to remove such a cooling system. In addition, adhesive tape is inferior in thermal conductivity to the same thermal paste.

Dimensions

General dimensions of the cooling system. For water systems (see "Type"), this paragraph indicates the size of the external radiator (the dimensions of the water block in such devices are small, and there is no need to specify them in particular).

In general, this is a fairly obvious parameter. We only note that for case fans (see ibid.), the thickness is of particular importance — it directly depends on how much space the device will take up inside the system unit. At the same time, it is customary to refer to fans with a thin case for models in which this size does not exceed 20 mm.
Deepcool ICE EDGE MINI FS V2.0 often compared
Deepcool GAMMAXX 200T often compared