United Kingdom
Catalog   /   Computing   /   Components   /   Computer Cooling

Comparison NZXT Kraken X63 vs NZXT Kraken X52

Add to comparison
NZXT Kraken X63
NZXT Kraken X52
NZXT Kraken X63NZXT Kraken X52
Compare prices 1
from £312.86 
Outdated Product
TOP sellers
Main specs
Featuresfor CPUfor CPU
Product typeliquid coolingliquid cooling
Fan
Number of fans22
Fan size140 mm
120 mm /Aer P120/
Bearinghydrodynamichydrodynamic
Min. RPM500 rpm500 rpm
Max. RPM1800 rpm1800 rpm
Speed controllerauto (PWM)auto (PWM)
Max. air flow98.17 CFM
Static pressure2.71 mm H2O
MTBF60 K hours
replaceable
Min noise level21 dB21 dB
Noise level38 dB31 dB
Power source4-pin
4-pin /3-pin pump power/
Radiator
Heatsink materialaluminiumaluminium
Plate materialcopper
Socket
 
AMD AM4
AMD TR4/TRX4
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
AMD AM2/AM3/FM1/FM2
AMD AM4
AMD TR4/TRX4
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
Liquid cooling system
Heatsink size280 mm240 mm
Pump size80x80x55 mm80x80x53 mm
Pump rotation speed2800 rpm2800 rpm
Pipe length400 mm
Pump power source4-pin
General
Lighting
Lighting colourRGBRGB
Lighting syncNZXT CAM
Mount typebilateral (backplate)bilateral (backplate)
Manufacturer's warranty6 years6 years
Dimensions315x143x30 mm
275x123x30 mm /radiator/
Weight2090 g1080 g
Added to E-Catalogjanuary 2020july 2018

Fan size

The diameter of the fan(s) used in the cooling system.

In general, larger fans are considered more advanced than smaller ones: they allow you to create a powerful air flow at a relatively low speed and low noise level. On the other hand, a large diameter means large dimensions, weight and price. As for specific figures, 40 mm and 60 mm models are considered miniature, 80 mm and 92 mm are medium, 120 mm and 135 / 140 mm are large, and even 200 mm fans are found in the most powerful case systems.

Max. air flow

The maximum airflow that a cooling fan can create; measured in CFM — cubic feet per minute.

The higher the CFM number, the more efficient the fan. On the other hand, high performance requires either a large diameter (which affects the size and cost) or high speed (which increases the noise and vibration levels). Therefore, when choosing, it makes sense not to chase the maximum air flow, but to use special formulas that allow you to calculate the required number of CFM depending on the type and power of the cooled component and other parameters. Such formulas can be found in special sources. As for specific numbers, in the most modest systems, the performance does not exceed 30 CFM, and in the most powerful systems it can be up to 80 CFM and even more.

It is also worth considering that the actual value of the air flow at the highest speed is usually lower than the claimed maximum; see Static Pressure for details.

Static pressure

The maximum static air pressure generated by the fan during operation.

This parameter is measured as follows: if the fan is installed on a blind pipe, from which there is no air outlet, and turned on for blowing, then the pressure reached in the pipe will correspond to the static one. In fact, this parameter determines the overall efficiency of the fan: the higher the static pressure (ceteris paribus), the easier it is for the fan to “push” the required amount of air through a space with high resistance, for example, through narrow slots of a radiator or through a case full of components.

Also, this parameter is used for some specific calculations, however, these calculations are quite complex and, usually, are not necessary for an ordinary user — they are associated with nuances that are relevant mainly for computer enthusiasts. You can read more about this in special sources.

MTBF

The total time that a cooling fan is guaranteed to run before it fails. Note that when this time is exhausted, the device will not necessarily break — many modern fans have a significant margin of safety and are able to work for some more period. At the same time, it is worth evaluating the overall durability of the cooling system according to this parameter.

Noise level

The standard noise level generated by the cooling system during operation. Usually, this paragraph indicates the maximum noise during normal operation, without overloads and other "extreme".

Note that the noise level is indicated in decibels, and this is a non-linear value. So it is easiest to evaluate the actual loudness using comparative tables. Here is a table for values found in modern cooling systems:

20 dB — barely audible sound (quiet whisper of a person at a distance of about 1 m, sound background in an open field outside the city in calm weather);
25 dB — very quiet (normal whisper at a distance of 1 m);
30 dB — quiet (wall clock). It is this noise that, according to sanitary standards, is the maximum allowable for constant sound sources at night (from 23.00 to 07.00). This means that if the computer is planned to sit at night, it is desirable that the volume of the cooling system does not exceed this value.
35 dB — conversation in an undertone, sound background in a quiet library;
40 dB — conversation, relatively quiet, but already in full voice. The maximum permissible noise level for residential premises in the daytime, from 7.00 to 23.00, according to sanitary standards. However, even the noisiest cooling systems usually do not reach this indicator, the maximum for such equipment is about 38 – 39 dB.

Plate material

The material from which the substrate of the cooling system is made is the surface that is in direct contact with the cooled component (most often the processor). This parameter is especially important for models with heat pipes (see above), although it can be specified for coolers without this function. Options can be as follows: aluminium, nickel-plated aluminium, copper, nickel-plated stranded. More about them.

— Aluminium. The traditional, most common backing material. At a relatively low cost, aluminium has good thermal conductivity characteristics, is easy to grind (required for a snug fit), and well resists scratches and other irregularities, as well as corrosion. However in terms of heat removal efficiency, this material is still inferior to copper — however, this becomes noticeable mainly in advanced systems that require the highest possible thermal conductivity.

— Copper. Copper is noticeably more expensive than aluminium, but this is offset by higher thermal conductivity and, accordingly, cooling efficiency. The noticeable disadvantages of this metal include some tendency to corrosion when exposed to moisture and certain substances. Therefore, pure copper is used relatively rarely — nickel-plated substrates are more common (see below).

— Nickel-plated copper. Copper substrate with an additional n...ickel coating. Such a coating increases resistance to corrosion and scratches, while it practically does not affect the thermal conductivity of the substrate and work efficiency. However this feature somewhat increases the price of the radiator, but it is found mainly in high-end cooling systems, where this moment is almost invisible against the background of the overall cost of the device.

— Nickel-plated aluminium. Aluminium substrate with an additional nickel coating. For aluminium in general, see above, and the coating makes the heatsink more resistant to corrosion, scratches, and burrs. On the other hand, it affects the cost, despite the fact that in fact, pure aluminium is often quite sufficient for efficient operation (especially since this metal itself is very resistant to corrosion). Therefore, this variant was not distributed.

Socket

Socket - processor connector - with which the corresponding cooling system is compatible.

Different sockets differ not only in compatibility with a particular CPU, but also in the configuration of the mounting place for the cooling system. So, when purchasing a processor cooling system separately, it is worth making sure that it is compatible with the socket. Nowadays, solutions are mainly produced for the following types of sockets: AMD AM2/AM3/FM1/FM2, AMD AM4, AMD AM5, AMD TR4/TRX4, Intel 775, Intel 1150, Intel 1155/1156, Intel 1366, Intel 2011/2011 v3, Intel 2066, Intel 1151/1151 v2, Intel 1200, Intel 1700.

Heatsink size

The nominal size of the radiator provided in the water cooling system.

The radiator provides cooling of the heated coolant coming from the cooled components of the system. It most often works on the principle of a cooler — that is, it consists of the actual radiator and one or more fans. The size of the radiator is indicated by one number — by the largest dimension, length. And the width (on which the working area and, accordingly, efficiency depends) can be determined based on the length. The fact is that radiators use fans of two diameters — 120 and 140 mm; if there are several such fans, they are installed in a row. This means that the length of the structure will necessarily be a multiple of the fan diameter — 120 or 140 mm, and the width will correspond to this diameter. For example, a 120mm or 140mm product would have the same width and one fan, while a 240mm product would have two 120mm fans.

The described features lead to the fact that a larger size does not necessarily mean a more advanced design. So, a 360mm or even 420 mm radiator with three small fans can have the same or even lower efficiency than a 280mm model. In addition, we recall that larger fans with the same performance are slower, and therefore quieter.

Also, the size o...f the radiator must be taken into account when looking for a seat in the case for it. Be aware of the width as well: 140mm fan heatsinks are usually not compatible with 120mm fan heatsink slots. So, a 140 mm model will not fit in a 240 mm (2x120 mm) socket, and 280 mm (2x140 mm) will not fit under 360 mm (3x120 mm), although formally the size seems to be enough in both cases.

Pump size

The dimensions of the pump that the water cooling system is equipped with.

Most often, this parameter is indicated for all three dimensions: length, width and thickness (height). These dimensions determine two points: the space required to install the pump, and the diameter of its working part. With the first, everything is quite obvious; we only note that in some systems the pump simultaneously plays the role of a water block and is installed directly on the cooled component of the system, and it is there that there should be enough space. The diameter approximately corresponds to the length and width of the pump (or the smaller of these dimensions if they are not the same — for example, 55 mm in the model 60x55x43 mm). Some operating features depend on this parameter. So, the large diameter of the pump allows you to achieve the required performance at a relatively low rotation speed; the latter, in turn, reduces the noise level and increases the overall reliability of the structure. On the other hand, a large pump costs more and takes up more space.
NZXT Kraken X63 often compared
NZXT Kraken X52 often compared