Cooling performance
The performance of the cooling system installed in the device, in other words, is the amount of water that can be cooled per hour. In coolers, it is usually indicated for water at room temperature — about 20 °C, in models with a connection to the water mains (see "Water loading") — for 15 °C (this is the average temperature of cold water). Accordingly, when deviating from these indicators, the actual performance may be slightly more or less (however, such deviations must be very significant for this to become noticeable).
This parameter determines two main points. First of all, it characterizes the maximum flow of cold water that the device can handle and the recommended breaks between use. For example, if a user needs to collect 2 standard 200-gram cups and the cooler specifications state a cooling capacity of 2 L/h, this means that the cooler will cool 400 g (0.4 L) of water that has entered the tank, for 0,4/2 = 0.2 h, that is about 12 minutes. However, the need for such calculations arises mainly with high water consumption, which is very close to the claimed performance.
Also, knowing the cooling rate and the volume of the cold water tank (see above), you can determine how long it will take to cool the tank filled with water at room temperature. Such situations arise during the first use of the device, as well as when draining the entire volume of the reservoir. So, if in the above example, the volume of the tank is 3 litres, then 3/2 = 1.5 hours...will be spent on cooling it. However, you can use water earlier, if a slightly elevated temperature is not critical.
Heating performance
The performance of the heating system installed in the device, in other words, is the amount of water that can be heated per hour. In coolers, it is usually indicated for water at room temperature — about 20 °C, in models with a connection to the water mains (see "Water loading") — for 15 °C (this is the average temperature of cold water). Accordingly, when deviating from these indicators, the actual performance may be slightly more or less (however, such deviations must be very significant for this to become noticeable).
This parameter determines two main points. First of all, it characterizes the maximum consumption of hot water that the device can handle and the recommended breaks between use. For example, if a user needs to fill 2 tea cups with a volume of 300 mL each, and the cooler specifications state a heating capacity of 3 L/h, this means that 600 g (0.6 L) of water that has entered the tank instead of poured out, the cooler will heat in 0.6/3 = 0.2 h, that is, about 12 minutes. However, the need for such calculations arises mainly with high water consumption, which is very close to the claimed performance.
Also, knowing the heating rate and the volume of the cold water tank (see above), you can determine how long it will take to heat the tank filled with water at room temperature (for example, if the cooler is started for the first time, or if the tank was completely drained before). So, if in the above example, the volume of the tank is 1 li...tre, then 1/3 hour will be spent on heating it, that is, about 20 minutes. However, you can use water earlier if maximum heating is not critical.
Water blocker
Blocking allows you to restrict access to the water supply. First of all, this function is provided to protect children from accidentally pouring hot water. Since the water heats up to 90 degrees, overturned glass and spilt water can cause a burn, and this blocker will eliminate the possibility of such cases.