Dark mode
United Kingdom
Catalog   /   Camping & Fishing   /   Fishing   /   Boat Motors

Comparison Parsun TC3.6BMS vs Fisher T3.5BMS

Add to comparison
Parsun TC3.6BMS
Fisher T3.5BMS
Parsun TC3.6BMSFisher T3.5BMS
Outdated Product
from $537.16 up to $650.40
Outdated Product
TOP sellers
Applicationboatboat
Motor typepropellerpropeller
Motor
Engine typepetrolpetrol
Motor duty cycle2-stroke2-stroke
Maximum power3.6 hp3.5 hp
Maximum power2.69 kW2.57 kW
Maximum revolutions5500 rpm5300 rpm
Number of cylinders1 pcs1 pcs
Capacity75 cm375 cm3
Piston diameter47 mm47 mm
Piston stroke43 mm43 mm
Coolingliquidliquid
Exhaust systemthrough the propellerthrough the propeller
Fuel system
Fuel system typecarburetorcarburetor
Fuel tankbuilt-inbuilt-in
Fuel tank volume1.5 L1.5 L
Recommended fuelAI-98 gasolineAI-95 gasoline
Drive unit
Gear ratio2.082.08
Propeller screw3-bladed3-bladed
Gear
forward
neutral
 
forward
 
reverse
Equipment
Transom height (deadwood)381 mm381 mm
Control systemtillertiller
Launch typemanualmanual
Leg lift (trim)manualmanual
General
Weight16 kg14.3 kg
Added to E-Catalogjanuary 2017may 2015

Maximum power

The maximum operating power of the outboard motor, expressed in horsepower.

Horsepower (hp) has traditionally been used primarily to refer to the power of internal combustion engines, including gasoline engines (see "Engine type"). However, in outboard motors, these units are also used for electric models (see ibid.). This is due to the fact that the majority of gasoline engines are on the market, and boat manufacturers prefer to indicate the maximum recommended engine power in “horses”.

The general patterns when choosing outboard motors in terms of power are as follows. On the one hand, a more powerful unit will allow you to develop more speed and is better suited for a heavy boat (see "Maximum boat weight"). On the other hand, weight, dimensions, cost and fuel/energy consumption also directly depend on power. Therefore, it does not always make sense to chase the maximum performance.

In addition, the choice of motor for maximum power also depends on the characteristics of the craft on which it is planned to be used. It is not worth exceeding the recommended power stated in the specifications — firstly, the boat transom may not be designed for a heavy large-sized unit, and secondly, the boat itself may not be suitable for acceleration to high speeds. There are also more specific recommendations. For example, from the point of view of efficiency and safety, the engine power at the level of 60 – 80% of the ma...ximum specified in the characteristics of the boat is considered optimal. Lower values may be useful if economy and low noise level are important to you, and higher values if high speed and acceleration dynamics are key points.

There is one more specific point associated with this parameter: most often, the characteristics indicate the power output directly to the propeller, however, some manufacturers (mostly east european) can go for a little trick, indicating the power on the main motor shaft. When power is transferred to the screw, losses inevitably occur, so the useful power of the motor in such a case will be less than claimed. Thus, when choosing and comparing, it's ok to clarify what kind of power is meant in the characteristics — on the propeller or on the shaft.

Maximum power

The maximum operating power of the outboard motor, expressed in kilowatts.

The practical value of motor power is described in detail in “Maximum power" is higher. Here we note that the kilowatt (derivative of watt) is just one of the units of power used in fact along with horsepower (hp); 1 HP ≈ 735 W (0.735 kW). Watts are considered the traditional unit for electric motors (see "Engine Type"), but for a number of reasons, outboard motor manufacturers use this designation for gasoline models as well.

Maximum revolutions

The highest shaft speed that the outboard motor is capable of developing.

Theoretically, the speed of rotation of the propeller (or turbine — see "Motor type") depends on the engine speed, and, accordingly, the speed that the boat is capable of developing. However, in addition to this indicator, many other factors also affect the performance of the motor — engine power (see above), gear ratio (see below), propeller design, etc. As a result, situations are quite normal when a more powerful and high-speed motor has lower revolutions than the weaker one. Therefore, this parameter is, in fact, a reference one, and has almost no practical value when choosing. Unless it can be noted that high-speed motors are more susceptible to noise and vibration than low-speed ones; however, this moment can be compensated by the use of various technical tricks.

Recommended fuel

The type of gasoline recommended for use in an internal combustion engine outboard (see "Engine Type"). In fact, this paragraph indicates gasoline with the lowest octane rating that is allowed to be used in the engine; higher rates are allowed, lower ones are highly undesirable, if not outright prohibited.

The octane number is an indicator that determines the resistance of a particular brand of gasoline to detonation (self-ignition during compression in the cylinder). Detonation is a very undesirable phenomenon, because. it leads to an increase in engine loads simultaneously with a decrease in its power and an increase in the amount of harmful substances in the exhaust gases. And this phenomenon occurs in cases where the engine uses gasoline with lower octane numbers than those for which the unit is designed.

Automobile gasoline, which is also used for refueling boat engines, is marked with the AI or RON index; the first option is used in the characteristics of east european motors, the second — in foreign ones. However, in both indexes, the number after the letters means the octane number. The higher this number, the more demanding the engine is on fuel quality. Thus, for example, a unit under AI-92 will be able to work normally with AI-95, but AI-90 or AI-87 cannot be filled into it. "Record holders" for unpretentiousness today are engines that can work even on the AI-76; but they are a rare exception to the general rule.

Gear

The types of gears provided in the design of the outboard motor are, in fact, the direction in which it can move the boat.

Front. Standard gear for forward movement. Available in all outboard motors without exception, by definition.

— I'm neutral. In this case, neutral gear means the mode of operation of the motor, in which its shaft rotates idly, without transferring rotation to the propeller or water jet. Thanks to this, you can completely remove the thrust without turning off the motor and without lifting its “leg” out of the water. Considering that starting after a shutdown can be a rather troublesome procedure (especially if you have to do this often), and removing a spinning propeller from the water is generally undesirable — having a neutral gear is a very useful feature, and most gasoline engines (see "Engine type") have this mode. But in electric models (see ibid.), stopping and starting do not constitute a problem, so the role of the “neutral” in them is played by turning off the power and completely stopping the motor (and the neutral gear itself is not indicated in the specifications).

Back (reverse). A mode of operation in which the engine pulls the entire vessel backwards; in propeller motors, it is implemented by rotating the propeller in the opposite direction, in jet engines, by using reverse dampers. The reverse functi...on greatly facilitates both manoeuvring in narrow spaces and emergency braking on the water, so it is found in the vast majority of gasoline engines and almost all electric ones.

Note that electric motors (see “Engine type”) can have several gears of the same type — for example, 5 forward and 3 reverse. In such models, each "gear" is a separate switch position corresponding to a certain engine power. In gasoline engines, power control is carried out smoothly, using a throttle, so they have less than one gear of each type.

Weight

The total weight of the outboard motor. This parameter is indicated, usually, only for the unit itself, without taking into account the fuel in the tank and the tank itself (if it is external, see "Fuel tank"), as well as additional equipment. Motor weight data can be useful in order to estimate the overall balance of the boat and the change in its payload capacity.
Parsun TC3.6BMS often compared
Fisher T3.5BMS often compared