United Kingdom
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   Amplifiers

Comparison NAD C399 vs Denon PMA-720AE

Add to comparison
NAD C399
Denon PMA-720AE
NAD C399Denon PMA-720AE
Outdated Product
from $294.00 up to $371.20
Outdated Product
TOP sellers
Main
HDMI-eARC input
Device typeintegrated amplifierintegrated amplifier
Element basehybridtransistor
Amplifier parameters
Number of channels22
Frequency range20 – 20000 Hz20 – 50000 Hz
Power per channel (8Ω)180 W50 W
Power per channel (4Ω)180 W85 W
Signal to noise ratio95 dB107 dB
Signal to noise ratio (Phono MM/MC)84 dB86 dB
Damping factor150
Harmonic distortion0.01 %
Channel sensitivity / impedance
Line input
 
 
120 mV
45 kOhm
Phono MM/MC
 
 
2.5 mV
47 kOhm
REC output
 
150 mV
Preout
 
700 mV
Connectors
Inputs
Phono
coaxial S/P-DIF /2/
optical /2/
RS-232
control input (IR)
Phono
 
 
 
control input (IR)
RCA2 pairs5 pairs
Trigger1 шт
Outputs
Pre-Amp
to subwoofer /2/
control output (IR)
Pre-Amp
 
control output (IR)
For acoustics2 шт4 шт
REC (to recorder)1 pairs
Trigger output1 шт
On headphones3.5 mm (mini-Jack)6.35 mm (Jack)
Front panel
display
 
headphone output
 
indicators
headphone output
Features
Adjustments
 
 
 
level adjustment
 
bass control
treble adjustment
balance adjustment
level adjustment
loudness
More features
 
ММ phono stage
 
 
 
Bluetooth
By-pass/Direct
ММ phono stage
additional speaker connect
Bi-Wiring
external devices control
 
General
Remote control
Power output3 шт
PSUinternalinternal
Power consumption200 W
Standby consumption0.3 W
Dimensions (WxDxH)435х120х390 mm434х307х121 mm
Weight11.2 kg7.1 kg
Color
Added to E-Catalogfebruary 2022january 2014

Element base

transistor. The term "semiconductor" is also used, since it is on such materials that the operation of transistors is based. Such an element base is the most popular in modern amplifiers: transistors are able to provide high sound quality with a minimum of distortion, while they are inexpensive, unpretentious in use, do not require powerful cooling systems, and are also resistant to shock and shaking. However they can somewhat lose to lamps in terms of the “atmospheric” sound (for more details, see below); however, this is already a matter of personal tastes of each user.

Lamp. Element base built on radio tubes. Historically, this variant predates the transistor variant, but pure tube amps are now relatively rare. This is due not only to the high cost of such devices, but also to their large dimensions and some inconvenience in use: after switching on, it takes some time to “warm up”, and the lamps themselves have a relatively short service life. In addition, tube amplifiers are significantly inferior to transistor amplifiers in terms of signal purity (in particular, harmonic coefficient, see below); however, this point cannot be called a clear disadvantage. The fact is that distortion from tube circuits is much more pleasant to the ear than from transistor ones; moreover, they are one of the components of the notorious "warm tube sound". Therefore, most modern tube amplifiers belong to the Hi-E...nd category and are designed for lovers of such a sound.

Hybrid. Amplifiers that combine both of the above types of circuits in their design. Thanks to this, it becomes possible to achieve a characteristic "tube" sound at a relatively low cost and acceptable dimensions of the device. Most of these models are of the integrated type (see above) and combine a tube preamp with transistor output stages.

Frequency range

The range of audio frequencies that the amplifier is capable of handling. The wider this range, the more complete the overall picture of the sound, the less likely it is that too high or low frequencies will be “cut off” by the output amplifier. However, note that the range of sound audible to a person is on average from 16 Hz to 20 kHz; There are some deviations from this norm, but they are small. At the same time, modern Hi-Fi and Hi-End technology can have a much wider range — most often it is a kind of "side effect" of high-end circuits. Some manufacturers may use this property for promotional purposes, but it does not carry practical value in itself.

Note that even within the audible range it does not always make sense to chase the maximum coverage. It is worth, for example, to take into account that the actually audible sound cannot be better than the speakers are capable of giving out; therefore, for a speaker system with a lower threshold of, say, 70 Hz, there is no need to look for an amplifier with this figure of 16 Hz. Also, do not forget that a wide frequency range in itself does not absolutely guarantee high sound quality — it is associated with a huge number of other factors.

Power per channel (8Ω)

The nominal sound power output by the amplifier per channel when operating with a load having a dynamic resistance (impedance) of 8 ohms. In our catalog, this parameter is indicated for the mode when all channels of the amplifier work under load (see "Number of channels"); in the presence of unused channels, the rated power may be slightly higher, but this mode cannot be called standard.

Rated power can be simply described as the highest output signal power at which the amplifier is able to work stably for a long time (at least an hour) without negative consequences. These are average figures, because in fact, the audio signal is by definition unstable, and individual level jumps can significantly exceed the rated power. However, it is she who is the main basis for assessing the overall loudness of the sound.

This indicator also determines which speakers can be connected to the amplifier: their rated power should not be lower than that of the amplifier.

According to the laws of electrodynamics, with different dynamic load resistance, the output power of the amplifier will also be different. In modern speakers, the standard values \u200b\u200bare 8, 6, 4 and 2 Ohms, and power levels are indicated for them.

Power per channel (4Ω)

The nominal sound power output by the amplifier per channel when a load with a dynamic resistance (impedance) of 4 ohms is connected to it. See Power per Channel (8Ω) for more information on power rating and its relationship to impedance.

Signal to noise ratio

In itself, the signal-to-noise ratio is the ratio of the level of pure sound produced by the amplifier to the level of extraneous noise that occurs during its operation. This parameter is the main indicator of the overall sound quality — and very clear, because. its measurement takes into account almost all the noise that affects the sound in normal operating conditions. A level of 70 – 80 dB in modern amplifiers can be considered acceptable, 80 – 90 dB is not bad, and for advanced audiophile-class devices, a signal-to-noise ratio of at least 100 dB is considered mandatory.

If the specifications do not specify for which output the signal-to-noise ratio is indicated, it usually means its value for the linear input (see "RCA (par)"). This is quite enough to evaluate the quality of the device for this parameter. However, some manufacturers indicate it for other inputs — Main, Phono; see below for more on this.

Signal to noise ratio (Phono MM/MC)

signal-to-noise ratio when the amplifier is driven through the Phono input. This interface is for connecting turntables; its features are described in the “Inputs” section below, and for the meaning of any signal-to-noise ratio, see the corresponding section above.

Damping factor

The damping factor describes the quality of interaction between the amplifier and the speaker system connected to it.

Due to the design features, any speaker is prone to the occurrence of so-called parasitic oscillations — oscillations that continue after the main impulse from the amplifier has ceased (similar to how a string continues to vibrate after a pluck). This phenomenon has a negative effect on sound quality, and manufacturers use various means to reduce it to an absolute minimum; suppression of parasitic oscillations is called damping.

The most effective type of damping is electrical, by reducing the output impedance of the amplifier. The lower this resistance, the better the amplifier keeps the speakers from unnecessary vibrations. To evaluate this effect, they introduced the concept of “damping factor” (damping factor) — the ratio of the load resistance (impedance) to the output resistance of the amplifier. The minimum value of such a coefficient for Hi-Fi class equipment is 20; indicators at the level of 100 – 120 can be called good, and among the Hi-End segment there are numbers of the order of several thousand.

At the same time, it is worth noting that when increasing to three-digit numbers, the original meaning of this parameter is, in fact, lost, and other points appear. The most important of them from a practical point of view is that models with a high damping factor are very demanding on the quality of the connection to t...he speakers — the high resistance of cables and connectors can negate the damping properties of the amplifier itself. There are other nuances associated with this indicator (in particular, recommendations for choosing an amplifier and speakers for each other); they are described in detail in specialized sources.

Harmonic distortion

This indicator describes the amount of non-linear distortion introduced by the amplifier into the processed signal. Such distortions are not necessarily perceived as extraneous noise, but they degrade the quality of the sound anyway — for example, they can make it more deaf. It is almost impossible to avoid them, but it can be reduced to levels inaudible to the human ear.

As a result, the harmonic distortion factor (harmonics) is one of the main parameters describing the overall sound quality in Hi-Fi and Hi-End amplifiers. The lower it is, the clearer the sound. Hundredths of a percent are considered a good indicator for modern amplifiers, thousandths and below are excellent. The exceptions are tube and hybrid models, for which rather high harmonic coefficients are allowed; see "Element base" for more details.

Line input

The sensitivity and dynamic impedance of the amplifier when a signal is applied to the RCA line input.

Under the sensitivity of any input (except optical) is meant the lowest signal voltage at this input, at which the amplifier is able to provide normal nominal power values (see "Power per channel (8Ω)"). This parameter determines, first of all, the requirements for the signal source. On the one hand, the voltage provided by this source must not be lower than the input sensitivity of the amplifier, otherwise the latter simply will not give the claimed characteristics. However, a significant excess in voltage should not be allowed, otherwise the sound will begin to be distorted. More detailed recommendations on choosing an amplifier by sensitivity are described in special sources.

For any input other than optical, it is believed that the higher this indicator, the less distortion the amplifier introduces into the signal. The minimum level of input impedance in modern models is considered to be 10 kOhm, and in high-end devices it can reach several hundred kOhm.
Denon PMA-720AE often compared