United Kingdom
Catalog   /   Computing   /   Components   /   SSD

Comparison Kingston XS2000 SXS2000/1000G 1 TB vs HP P500 1F5P7AA 1 TB

Add to comparison
Kingston XS2000 SXS2000/1000G 1 TB
HP P500 1F5P7AA 1 TB
Kingston XS2000 SXS2000/1000G 1 TBHP P500 1F5P7AA 1 TB
Compare prices 5
from £72.49 
Expecting restock
TOP sellers
Placementexternalexternal
Size1000 GB1000 GB
Form factor2.5"
InterfaceUSB C 3.2 gen2x2USB C 3.2 gen1
Technical specs
Memory type3D TLC NAND3D TLC NAND
Write speed2000 MB/s255 MB/s
Read speed2000 MB/s420 MB/s
Manufacturer's warranty5 years3 years
General
Cable includedUSB C to USB C and USB C to USB A
Shockproof
Ingress Protection (IP)IP55
Materialmetal
metal /aluminium/
Size70x33x14 mm79x54x10 mm
Weight29 g45 g
Color
Added to E-Catalogseptember 2021february 2021

Form factor

The form factor in which the drive is made. This characteristic determines the size and shape of the module, and in many cases also the connection interface. At the same time, it should be noted that for external SSDs (see "Type") the form factor is a secondary parameter, only the overall dimensions of the case depend on it (and even then very approximately). Therefore, you should pay attention to this moment first of all when choosing an internal SSD — such a drive must correspond to the form factor of the seat for it, otherwise a normal installation will be impossible.

Here are some of the more popular options:

2.5 ". One of the most common form factors for internal SSDs. Initially, 2.5" drives were used in laptops, but nowadays the corresponding slots are also found in most desktop PCs. Anyway, modules of this form factor can be installed in different ways: some are mounted in separate slots similar to hard drives, others (under the U.2 interface, see "Connector") are inserted directly into motherboard connectors.

M.2. A form factor used mainly in high-end internal drives that combine miniature size and significant volumes. It uses its own standard connection connector, so this connector is not separately indicated in the specifications. Note that the M.2 standard combines two data transfer formats at once — SATA and PCI-E, and the drive usually supports only one of the...m; see "M.2 interface" for details. Anyway, due to their small dimensions, such modules are suitable for both desktop PCs and laptops.

mini-SATA (mSATA). Miniature form factor of internal drives, the ideological predecessor of M.2. It was originally developed for netbooks and ultra-compact laptops, but nowadays you can also find desktop PCs with mSATA connectors on motherboards. However, due to the emergence and development of more advanced options, this form factor is gradually falling into disuse.

PCI-E card(HHHL). Drives made in the form of expansion cards and plugged into PCI-E slots (just like external video cards, sound cards, etc.). The HHHL marking means half length and half height, so these modules are suitable not only for full-sized PCs, but also for more compact systems, such as nettops and even some laptops. The PCI-E interface allows you to achieve good data transfer speeds, moreover, NVMe is implemented through it (see below). On the other hand, these features are also available in more advanced and compact form factors, in particular M.2. Therefore, there are few SSD modules in the PCI-E card format nowadays on the market.

1.8 ". The form factor of miniature drives, originally created for ultra-compact laptops. However, nowadays SSD modules of this format can be found extremely rarely, and these are mainly external models. This is due to the emergence of more convenient and advanced forms factors for internal use, such as M.2 described above.

— 3.5". The largest form factor of modern SSDs — the size of such a module is comparable to a traditional desktop PC hard drive. Nowadays, it has practically fallen into disuse due to bulkiness and the absence of any noticeable advantages over smaller solutions .

Interface

The connection connector(s) used in the drive. Note that for outdoor models (see "Type"), here, usually, the connector on the case of the drive itself is indicated; the ability to connect to a particular jack on a PC (or other device) depends mainly on the availability of appropriate cables. The exception is models with a non-removable wire — they are talking about a plug on such a wire.

Some form factors — for example, M.2 — use their own standard connector, so this parameter is not specified for such models. In other cases, the connectors can be conditionally divided into external and internal — depending on the type of drives (see above). In internal modules, in addition to the same M.2, you can find SATA 3, U.2 and SAS interfaces. External devices mainly use different types of USB — the classic USB connector (versions 3.2 gen1 or 3.2 gen2) or USB-C (versions 3.2 gen1, 3.2 gen2, 3.2 gen2x2 or USB4). In addition, there are solutions with the Thunderbolt interface (usually versions v2 or v3). Let's take a closer look at these options:

— SATA 3. The third version of the SATA interface, providing data transfer rates up to 5.9 Gbps...(about 600 MB / s). By SSD standards, this speed is low, since SATA was originally developed for hard drives and was not intended to be used with high-speed solid-state memory. Therefore, such a connection can be found mainly in low-cost and outdated internal drives.

— SAS. A standard designed as a high performance connection for server systems. Despite the emergence of more advanced interfaces, it is still found nowadays. Provides data transfer rates up to 22.5 Gbps (2.8 GB/s), depending on version.

— U.2. A connector specially designed for high-end internal drives in the 2.5 "form factor, mainly for server purposes. Actually, U.2 is the name of a specialized form factor (2.5", height 15 mm), and the connector is formally called SFF- 8639. Such modules are connected in the same way as PCI-E expansion cards (via the same bus), but they are smaller in size and can be hot-swapped.

— U.3. A three-interface connector based on the U.2 specification (see the relevant paragraph) and using the same SFF-8639 connector. The U.3 connector combines SAS, SATA and NVMe interfaces in one controller, allowing you to connect different types of drives through the same slot. U.3 provides separate pins for identifying a particular type of drive. The specification was created for internal 2.5" form factor drives. Such modules are miniature, hot-swappable, and support external control pulses.

— USB 3.2 gen1. Traditional full-size USB connector, compliant with version 3.2 gen1. This version (formerly known as 3.1 gen1 or 3.0) provides data rates up to 4.8 Gbps. It is compatible with other USB standards, except that the connection speed will be limited by the slowest version.

— USB 3.2 gen2. A traditional full size USB connector, corresponding to version 3.2 gen2 (previously known as 3.1 gen2 or simply 3.1). Operates at speeds up to 10 Gbps, otherwise the key features are similar to those described above USB 3.2 gen1

— USB-C 3.2 gen1. USB-C connector supporting 3.2 gen1. Recall that this version allows you to achieve speeds up to 4.8 Gbps. And USB-C is a relatively new type of USB connector, having a small size (slightly larger than microUSB), a symmetrical oval shape and a double-sided design. It is especially useful for external SSDs, given that such drives are getting smaller and smaller.

— USB-C 3.2 gen2. USB-C connector supporting version 3.2 gen2 connectivity — with data transfer rates up to 10 Gbps. However, such a drive will be able to work with slower USB ports — unless the speed will be limited by the capabilities of such a port. See above for details on the USB-C connector itself.

— USB-C 3.2 gen2x2. USB-C type connector supporting connection version 3.2 gen2x2. For more information about the connector itself, see above; and version 3.2 gen 2x2 (previously known as USB 3.2) allows to achieve speeds up to 20 Gbps — that is, twice as high as in the original 3.2 gen 2, hence the name. It is also worth noting that this version is implemented only through USB-C connectors and is not used in ports of earlier standards.

— USB4. A high-speed revision of the USB interface that uses only symmetrical USB type C connectors. Allows you to achieve data transfer rates of up to 40 Gbps (depending on the technologies and standards implemented in a particular port). The interface can support Thunderbolt v3 and v4, and is backward compatible with previous USB specifications, although devices with a full-size USB-A plug will require an adapter.

Write speed

The highest speed in write mode characterizes the speed with which the module can receive information from a connected computer (or other external device). This speed is limited both by the connection interface (see "Connector"), and by the characteristics of the device of the SSD itself.

Read speed

The highest data exchange rate with a computer (or other external device) that the drive can provide in read mode; in other words — the highest speed of information output from the drive to an external device. This speed is limited both by the connection interface (see "Connector"), and by the characteristics of the device of the SSD itself. Its values can vary from 100 – 500 MB / s in the slowest models to 3 Gb / s and higher in the most advanced ones.

Manufacturer's warranty

Manufacturer's warranty provided for this model.

In fact, this is the minimum service life promised by the manufacturer, subject to the rules of operation. Most often, the actual service life of the device is much longer than the guaranteed one. However, keep in mind that the warranty often includes additional terms, such as “[so many years] or until the TBW is exhausted” (for more on TBW, see above).

Specific warranty periods may vary even for similar drives from the same manufacturer. The most popular options are 3 years and 5 years, however, there are other figures — up to 10 years in the most expensive and high-end models.

Cable included

The type of cable that comes with the drive.

This parameter is relevant only for external models (see "Type"). The type of cable is indicated by the types of connectors at its ends, with the plug for connecting to the drive being the first, and the plug for connecting to the computer being the second. Specific types of connectors can be as follows:

— USB A. Plug for traditional full-size USB ports — such as those provided in most computers and laptops. Actually, such a plug is used only at the “computer” end of the cable — USB A connectors are too bulky for the drives themselves.

— USB-C. The newest of modern USB connectors. Unlike its predecessors, it has a two-sided design — the plug can be inserted into the connector by either side. Very compact, making it suitable for installation in the drive case; however, it is also found in computers/laptops, so USB-C plugs can be provided on one or both sides of the cable.

— Micro B. Plug under the microUSB connector; such a connector is familiar to many from portable gadgets like smartphones and tablets, it is also found in SSD drives. Actually, the micro B plug is provided only on the side of the drive — this connector is practically never found in computers.

— MiniUSB. Another smaller version of the USB plug, in many ways similar to the micro B described above. Nowadays it is considered obsolete and has practically fallen into disuse.

The most common bundled c...able options are USB-C — USB A, USB-C — USB-C, micro B — USB A and mini USB — USB A. Some drives that have a USB-C connector are equipped with two types of wire at once — with USB-C and USB A at the "computer" end.

Shockproof

The presence in the drive of enhanced protection against shocks and concussions.

SSD modules themselves are pretty shock-resistant; the same feature is indicated if the drive is specially reinforced in order to withstand falls and other “troubles” as much as possible. The impact-resistant housing is relevant primarily for outdoor models (see "Type").

Ingress Protection (IP)

The level of protection allows you to understand how much the device is protected from dust and moisture. This is achieved due to the tightness of the case, additional rubber gaskets and is naturally displayed in numbers — for example IP67 (this level of protection indicates the waterproofness of the SSD). The first number indicates protection against dust, the second one tells about water protection. Now more about the possible numbers.

Dust protection:
5 — dust resistance (dust can get inside in small quantities that do not affect the operation of the device);
6 — dust protection (dust does not penetrate inside).

Water protection:
5 — protection against water jets from any direction (showers, storms).
7 — the possibility of short-term immersion under water to a shallow depth (up to 1 m).
8 — the possibility of a long (30 minutes or more) dive to a depth of more than 1 m. But specific restrictions on depth and time may be different.
Kingston XS2000 often compared
HP P500 often compared