Dark mode
United Kingdom
Catalog   /   Camping & Fishing   /   Camping   /   Flashlights

Comparison Olight i1R 2 PRO vs ArmyTek Zippy

Add to comparison
Olight i1R 2 PRO
ArmyTek Zippy
Olight i1R 2 PROArmyTek Zippy
Compare prices 1Compare prices 4
TOP sellers
Type
trinket
trinket
Specs
Lamp typelEDslED with reflector
Diode modelCOB plate diodes
Number of diodes1 pcs1 pcs
Max. luminous flux180 lm160 lm
Lighting range48 m15 m
Light angle (glare)110 °
Max. operating time12 h10 h
Brightness levels23
Power supply
Power sourcebatterybattery
Battery capacity100 mAh
USB charging port++
Charge level indicator
In box
In box
USB charging cable
battery(s)
 
 
battery(s)
carrying clip
General
Shockproof
Water protectionIPX8IP67
Key lock
Hanging hook
Built-in magnet
Materialmetalplastic
Length5.1 cm5.9 cm
Weight22 g12 g
Color
Added to E-Catalogseptember 2022september 2021

Lamp type

The type of lamp installed in the flashlight.

Nowadays, the most widespread models on LEDs(with or without a reflector). Halogen lamps are used much less frequently (alone or in combination with LEDs), xenon lamps, krypton lamps, fluorescent lamps, and in some models you can even find classic incandescent lamps. A separate type of light source is a laser. Here is a more detailed description of the most relevant options for today:

— LEDs. They can also be referred to as LED — an abbreviation of the English name. The most advanced type of lamps today, used in the vast majority of modern flashlights. One of the key advantages of LEDs is extremely high efficiency — as a result, they provide excellent brightness with low power consumption and small size, and they practically do not heat up during operation. LEDs can be made both in the form of separate point light sources and in the form of COB panels of a fairly large area; see Diode Model for details. Also, such light sources are resistant to shock, shock and low temperatures; with all this, they are generally inexpensive and have practically no noticeable shortcomings.

— LED with reflector. In lanterns with this type of lamp, LEDs (see above about them) are installed in special-shaped recesses covered with reflective material. Thank...s to this design, the light emitted by the LED to the sides is reflected and directed forward, in the same direction as the main stream. This significantly increases the overall brightness of the flashlight, which is especially important for compact models with a single LED of relatively low brightness. Actually, most compact types (see "Type") have just such a lamp design.

— Halogen lamp. One of the most popular modifications of a classic incandescent lamp: the light source is a hot metal spiral in a sealed glass flask filled with gas with the addition of bromine or iodine vapor (these substances are so-called halogens — hence the name of the lamps themselves). This has a positive effect on efficiency and allows you to achieve a fairly high brightness; so that modern lanterns with such lamps are usually referred to as hand-held lamps. At the same time, even in such devices, such lamps are becoming less and less common, being replaced by the LEDs described above.

— LEDs / halogen lamp. The combination in the design of the two light sources described above at once; usually the "halogen" is installed in the centre, and the LEDs are around it. At one time, this combination appeared as an attempt to create sufficiently powerful lighting devices that would consume less energy than analogues with halogen lamps, while costing less than pure LED ones. In addition, such a design provided additional features for adjusting the operating mode: it could be changed simply by turning on the existing light sources together or separately. However, with the development and cheapening of LED technologies, this option has practically lost its relevance; today it is extremely rare.

— Xenon lamp. This term can mean two types of light sources: one of the modifications of an incandescent lamp, where the bulb with a spiral is filled with an inert xenon gas, or a gas discharge lamp, in which the light source is an electric arc in the same xenon medium. The first variety was used mainly in small pocket flashlights, the second — in hand lamps. At one time, xenon lamps (both varieties) had very decent indicators of efficiency and brightness, although they were not cheap. However, again, the development of LEDs made the production of flashlights with such lamps impractical.

— Incandescent lamp. In this case, we mean classic incandescent lamps that do not belong to more advanced varieties — halogen, xenon, krypton, etc. Recall that the light source in such a lamp is a hot metal spiral in a glass bulb, which is filled either with vacuum (in miniature light bulbs), or a mixture of argon and nitrogen (in larger ones). Anyway, such lamps nowadays are considered completely obsolete — primarily due to low efficiency, which results in low brightness with significant power consumption, as well as strong heating during operation. However, nowadays this option can still be found in individual lamps — mainly hand-held lamps for the construction industry, powered by standard replaceable batteries for power tools. "Gluttony" in terms of energy consumption for such lamps is not critical, and the bulbs themselves are extremely cheap.

— Laser. The laser beam itself has a high effective range, but a small thickness. Therefore, flashlights with such light sources are usually equipped with adjustable optics, with which you can scatter the beam and turn its “imprint” from a point into a fairly large spot. Typically, laser flashlights have a specific purpose: illumination and target designation when hunting at night (for this, a mount on an optical sight is often provided), giving light signals, etc. Note that when using such devices, care must be taken: if it gets into the eyes, the laser beam can not only blind, but also cause irreversible damage, even at a fairly large distance.

The remaining types of lamps nowadays are practically ousted from the market by LEDs and are found mainly in frankly outdated models. It makes no sense to describe them in detail, we note only the key features:
  • Fluorescent lamp. One of the names for fluorescent lamps, known colloquially as "fluorescent lamps". The luminous flux itself turns out to be scattered, so such light sources were used mainly in tourist lanterns and individual models of hand-held lamps.
  • krypton lamp. An incandescent lamp with a bulb filled with krypton to increase brightness and reduce heat. Due to the high cost of the filler, such lamps were mostly made miniature and used in lanterns of the appropriate size.

Diode model

Model of the LED(s) used in the flashlight. Knowing the exact name of the LED, you can find its detailed characteristics and evaluate the capabilities of the flashlight. In addition, this information may be useful when replacing a failed diode.

Note that the LED model is indicated mainly if it is a high-quality LED with advanced characteristics. Such light sources are produced by different manufacturers, but the most popular in modern flashlights are products from Cree with its series Cree XM, Cree XP, Cree XHP. Here are some of the most common LEDs from this brand: Cree XP-L, Cree XM-L2, Cree XP-E, Cree XP-G, Cree XM-L T6, Cree XM-L2 T6, Cree XM-L U2, Cree XM- L2 U2, Cree XP-G R5, Cree XP-G2 R5, Cree XP-E Q5.

Cree XM-L and XM-L2 series diodes are used in high-power flashlights. XP-G and XP-G2 are used in relatively small models. They produce a beam of light in the shape of a circle with a darkening inside when using a reflector to focus. XP-E and XP-E2 are a godsend for small items with an evenly f...ocused beam and even illumination on the sides. The number “2” in the designation of the diode model indicates increased brightness (compared to the basic modification). The XHP series is also gaining popularity - the LEDs in this line more than double the light flow. At the same time, they are compatible with standard printed circuit boards and optics. The numerical prefix 35/50/70 in the name of XHP diodes indicates the dimensions of the housing.

Along with solutions from Cree, high-quality LEDs from the American manufacturer Luminus are often found in flashlights. Its range includes both inexpensive diode options for budget flashlights and advanced LED light sources with high luminous brightness and luminous flux intensity for the most powerful flashlights.

A separate case is represented by diode plates made using COB technology (chip-on-board, that is, “chip on a board”). Such plates are arrays of a large number of miniature light sources, soldered directly into a printed circuit board at a short distance from each other and filled with a special composition; This composition performs two functions at once. First of all, it protects the LEDs from contact with air, which increases their service life; In addition, the coating effectively diffuses light, creating a uniform luminous flux.

Note that previously, to create LED arrays, SMD technology was mainly used, with individual LEDs soldered onto the surface of a printed circuit board. However, COB is a more modern and advanced option: this technology allows small but bright light sources to be placed at very high densities, achieving powerful lumen output even with small array sizes. In addition, SMD boards did not provide a protective coating.

In general, it makes sense to pay attention to flashlights with COB plates if you need a high-quality source of diffused light. As a result, such diode arrays are especially popular in travel lanterns and auxiliary lighting (see "Type"), but can also be used in other varieties - from ultra-compact key fobs to high-power hand-held lamps.

Max. luminous flux

The maximum luminous flux provided by the lantern.

Luminous flux (denoted in lumens) can be described as the total amount of light produced by an LED or other light source and distributed in all directions where this source shines by itself (without lenses, reflectors, etc.). In fact, this means that the capabilities of the flashlight depend not only on the luminous flux, but also on the angle of illumination (see "Angle of illumination (light)"). For example, a relatively weak stream can be concentrated into a narrow beam, providing good range; and a large number of lumens will inevitably be needed to effectively cover a wide area.

Note that the coverage angle is not always specified in the characteristics, and even with such data it is difficult to immediately assess the real capabilities of the flashlight. Therefore, for such an assessment, it is best to use information about the actual illumination range (see below), and also take into account the general type of device (see above). For example, for the same number of lumens, a handheld flashlight with a reflector to form a directional beam will give a noticeably greater range than a tourist lamp with 360 ° coverage.

It should also be borne in mind that the high brightness of the flashlight is far from always justified, and it is worth choosing according to this parameter, taking into account the actual conditions of use. S...o, when working at short ranges, bright light can become a hindrance: it tyres the eyes and can blind others. In addition, an increase in brightness usually requires more powerful sources of both light and power, and the weight and dimensions of the lantern increase accordingly.

Lighting range

The maximum range at which the flashlight provides any effective illumination of objects. Different manufacturers have different criteria for this efficiency when measuring ranges, and therefore it is only possible to unequivocally compare among themselves in range only models of one manufacturer. At the same time, this parameter allows us to compare models from different manufacturers with some certainty: for example, flashlights with a lighting range of 15 m and 100 m will clearly belong to different range classes, regardless of manufacturers.

Note that the range of illumination depends not only on the maximum luminous flux provided by the lantern (see above), but also on the features of its design: the narrower the beam is provided by the reflector of the lantern, the greater the range will be, and vice versa — scattered light does not spread far. Some models allow you to adjust the beam width depending on the requirements of the situation (for more details, see "Adjusting the focus").

It is also worth bearing in mind that models with the same claimed lighting range can cover different spaces. For example, a hand lamp (see Type) with a reflector diameter of 20 cm will be able to provide a wider beam than a conventional hand lamp with a 5 cm reflector. And although in both cases the objects that fall into the light spot will be illuminated in the same way, however, in the first case, the size of the spot itself will be larger, and the actual efficien...cy of the flashlight will be correspondingly higher (in light of the fact that it is easier to "feel" individual objects with a wide beam, especially at a considerable distance).

Light angle (glare)

The angle of light or illumination provided by a flashlight.

The meaning of these parameters is generally the same — we are talking about the angle that forms the edges of the light flux diverging from the lantern. The only difference is what is meant by edges. So, speaking about the angle of the glow, they usually mean the angle directly between the edges of the main stream; beyond these edges the light does not propagate. And the word "light" refers to a relatively narrow sector in the centre of the light flux; there is also light outside its edges, but its intensity is low, and effective illumination is provided only within the light zone. Thus, there is no fundamental difference between these terms — both of them characterize the width of the sector effectively covered by the lantern.

In addition to the coverage width itself, the luminous flux density and, as a result, the effective illumination range also depend on this indicator. With the same number of lumens (see “Maximum luminous flux”), a small coverage angle allows you to brighter illuminate objects that fall under the beam and provide greater “range”; and a large angle, respectively, will mean extensive coverage, but with a small effective range and less illumination of objects within the beam.

Also note that if the coverage area has the shape of a rectangle, then for different brands (and even in different models of the same brand) this parameter can be designated differently:...in some cases, the angle is measured along the larger side of the rectangle, in others — diagonally. Most often, this difference is not fundamental, but exceptions are possible; in such cases, you should refer to the official documentation of the manufacturer.

Max. operating time

Maximum runtime of the flashlight without changing batteries or recharging the battery.

Note that in models with brightness control, this time is indicated for the most modest and, accordingly, economical mode. For example, in a flashlight with a maximum luminous flux of 1000 lm, the claimed operating time of 20 hours can be achieved at a brightness of only 30 lm, and at maximum battery life may not exceed half an hour. These nuances should be clarified according to the detailed characteristics. However, also note that additional modes of operation (see below) are not taken into account in this case: for example, if the flashlight from our example in SOS mode can operate for 30 hours, the characteristics will still state 20 hours.

It is also worth bearing in mind that for models with replaceable batteries, the actual operating time will also depend on the quality of such batteries. For example, for flashlights for AA and AAA elements, battery life is most often given when using high-quality alkaline batteries; if instead of them inexpensive saline ones are used, the operating time may be several times shorter.

In general, when choosing a flashlight according to the maximum operating time, it does not always make sense to focus on “long-playing” models: they often have either low power or impressive weight / dimensions, and the price can significantly “bite”. Flashlights with a long battery life will be useful first of all to those who have to s...tay “away from civilization” for a long time: extreme tourists, rescuers, military, etc. And for most everyday tasks in a modern city, and even for trips to nature for several days, up to 10 hours is enough.

Brightness levels

The number of brightness levels provided in the flashlight design. Most modern models have one level of brightness, but there are models with the ability to adjust. Several levels of brightness allow you to choose the best option for a particular case: for example, to view a small room, you can reduce the brightness and save battery power, while in a large warehouse you may need full power of the flashlight. Accordingly, the more brightness levels are provided in the design of the flashlight, the wider your options for choosing the best option will be.

Also note that in addition to step-by-step brightness adjustment, with fixed levels, modern flashlights can also be used with smooth adjustment. It is detailed below; here we note that the stepped format is technically simpler, cheaper, and therefore is used much more often. And in individual lamps, these options are combined — for them, the characteristics indicate both the number of individual brightness levels and the presence of smooth adjustment. The specific way to implement such a combination may be different. For example, a brightness control ring can have several fixed levels with clear values, and the ability to set any intermediate position between these values; the main mode of operation with smooth adjustment can be supplemented with a fixed level of reduced or increased brightness; etc.

Battery capacity

The capacity of the battery provided in the design or delivery of the flashlight.

Theoretically, a higher capacity allows to achieve greater battery life, but in fact, not everything is so simple. Firstly, the actual battery life will also depend on power consumption — and it can be different even in models with the same luminous flux (this is due to the difference in the characteristics of individual LEDs). Secondly, the physical features of the designation in milliamp-hours (mAh) are such that only batteries with the same nominal voltage can be directly compared by this indicator (in other cases, indicators must be recalculated using special formulas).

In light of all this, we can say that battery capacity is more of a reference than a practically significant parameter. So, in some cases, it allows you to compare different models of flashlights with each other, but only very approximately. For example, a device with a 1600 mAh battery will definitely have a longer battery life than a model with an 800 mAh battery that is similar in brightness, lamp type and “weight category”; but how much battery life will be higher is impossible to say for sure. So, in order to assess the practical capabilities of a flashlight, it is worth focus on more "close to life" characteristics — first of all, on the directly claimed maximum battery life (see above), as well as battery life indicators in different modes indicated in the manufacturer's documentation.

Charge level indicator

An indicator that indicates the level of charge of the battery installed in the flashlight. The design and functionality of such an indicator can be different — from a simple LED that changes colour and/or mode of operation depending on the state of the battery, to an LCD display that can display a specific charge level. However, anyway , the charge level indicator makes it easier to monitor the state of the battery and reduces the likelihood of being left without light at the most inopportune moment.
Olight i1R 2 PRO often compared
ArmyTek Zippy often compared