Dark mode
United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Mobile Phones

Comparison Doogee V30T 256 GB / 12 GB vs Doogee V Max 256 GB / 12 GB

Add to comparison
Doogee V30T 256 GB / 12 GB
Doogee V Max 256 GB / 12 GB
Doogee V30T 256 GB / 12 GBDoogee V Max 256 GB / 12 GB
from £299.99 
Expecting restock
Compare prices 4
TOP sellers
Main
RAM expansion function up to 15 GB. Customizable side button.
8 GB RAM expansion function. Customizable side button. Normal operation is allowed at -55°C to 70°C.
Display
Main display
6.58 "
2408х1080 (20:9)
401 ppi
IPS
120 Hz
Gorilla Glass v5
6.58 "
2408х1080 (20:9)
401 ppi
IPS
120 Hz
Gorilla Glass v5
Brightness480 nit400 nit
Display-to-body ratio71 %70 %
Hardware
Operating systemAndroid 12.0Android 12.0
CPU modelDimensity 1080Dimensity 1080
CPU frequency2.4 GHz2.6 GHz
CPU cores88
Processor rating AnTuTu2525
GPUARM Mali-G68 MC4ARM Mali-G68 MC4
RAM12 GB12 GB
RAM typeLPDDR5LPDDR4X
Memory storage256 GB256 GB
Storage typeUFS 3.1UFS 3.1
Memory card slotmicroSDmicroSD
Max. memory card storage2048 GB2048 GB
Test results
AnTuTu Benchmark506 000 score(s)518 000 score(s)
Geekbench2303 score(s)
Sling Shot Extreme (OpenGL ES 3.1 / METAL)4188 point(s)
Main camera
Lenses3 modules3 modules
Main lens
108 MP
f/1.8
90 °
Samsung S5KHM2SP03
108 MP
f/1.8
90 °
Samsung S5KHM2SP03
Ultra wide lens
16 MP
f/2.2
130 °
16 MP
f/2.2
130 °
Additional lensnight vision, 20 MP, f/1.8, 80°, Sony IMX350
Full HD (1080p)30 fps30 fps
4K30 fps30 fps
Flash
Front camera
Form factorteardropteardrop
Main selfie lens32 MP32 MP
Aperturef/2.0f/1.8
Field of view90 °90 °
Full HD (1080p)30 fps30 fps
Ultra HD (4K)30 fps30 fps
Connections and communication
Cellular technology
5G
CDMA
5G
CDMA
SIM card typenano+e-SIMnano-SIM
SIM slots2 SIMSIM + SIM/microSD
Connectivity technology
Wi-Fi 6 (802.11ax)
Bluetooth v 5.2
NFC
Wi-Fi 6 (802.11ax)
Bluetooth v 5.2
NFC
Inputs & outputs
USB C
USB C 2.0
Features and navigation
Features
side fingerprint scanner
stereo
 
FM receiver
notification indicator
gyroscope
light sensor
side fingerprint scanner
stereo
Hi-Res Audio
FM receiver
notification indicator
gyroscope
light sensor
Navigation
aGPS
GPS module
Dual GPS
GLONASS
Galileo
digital compass
aGPS
GPS module
Dual GPS
GLONASS
Galileo
digital compass
Power supply
Battery capacity10800 mAh22000 mAh
Battery life (PCMark)16.82 h
Fast chargingPower DeliveryPower Delivery
Charger power66 W33 W
Fast charging time20% in 10 min, 35% in 15 min, 55% in 30 min
Wireless charging15 W
General
WaterproofIP68/IP69KIP68/IP69K
ShockproofMIL-STD-810MIL-STD-810
Bezel/back cover materialplastic/leathermetal/plastic
What's in the box?
screen protector
charger
screen protector
charger
Dimensions (HxWxD)178.4x83.1x18.3 mm178.5x83.1x27.3 mm
Weight376 g
Added to E-Catalogjuly 2023march 2023

Brightness

The maximum brightness in nits provided by the smartphone display.

The brighter the display, the more readable the picture remains on it under intense ambient light (for example, outdoors on a clear sunny day). Also, high brightness is important for the correct displaying of HDR content. However, a large amount of brightness affects the cost and power consumption of the screen. Manufacturers can specify standard, maximum, and peak brightness values. At the same time, an equal sign cannot be put between the maximum and peak brightness. The first indicates the ability of the screen to produce the specified brightness over its entire area, while the peak one — in a limited area and for a short time (mainly for HDR content).

Display-to-body ratio

The ratio of the screen area to the total front panel area of the phone. Simply put, this spec describes how much of the front panel is occupied by the screen; the rest is the bezels.

This indicator is given exclusively for smartphones with touch screens — it is for them that it is most relevant. The larger the percentage of the body is occupied by the screen, the thinner are the bezels, the neater the smartphone looks and the more convenient it is to work with it with one hand. As for specific numbers, the average values are 80 – 85 %, the higher values allow us to talk about a thin bezel, and more than 90 % — about a “bezel less” design.

Separately, we note that this parameter has nothing to do with the aspect ratio of the screen. The aspect ratio describes only the display itself — its proportions, the ratio between the larger and smaller side of the rectangle.

CPU frequency

The clock frequency of the CPU that the device is equipped with. For multi-core processors, which are standard in modern smartphones, the frequency of each individual core is implied; and if the processor has cores with different frequencies (see "Number of cores") — usually, the maximum indicator is given.

In general, high performance smartphones have high frequency of the processor. However, note that this parameter itself is not directly related to the capabilities of the CPU: many other features of the chip affect the actual performance, and often a low cost solution with a higher clock speed turns out to be less performant than an expensive one, and at the same time, presumably, more "slow" processor. In addition, the overall performance of the system directly depends on a whole set of other factors — primarily the amount of RAM. Therefore, when evaluating a smartphone, it is worth focus not so much on the frequency of the processor, but on the general specs of the system and visual indicators like the results in tests (see below).

RAM type

The type of random access memory (RAM) installed in the smartphone.

All modern devices use LPDDR format RAM ( LPDDR4, LPDDR4x, LPDDR5, LPDDR5x, LPDDR5T). In addition to its miniature size, it differs from regular computer RAM by supporting special data transfer formats (16- and 32-bit memory buses). But the versions of such memory can be different:

— LPDDR3. The earliest generation of LPDDR of the current ones — presented in 2012, implemented in devices since 2013. Standardly operates at speeds up to 1600 MT/s (megatransactions per second) and a frequency of up to 933 MHz; the “enhanced” version supports speeds up to 2133 MT/s. Nowadays, this standard is rare, mainly among outdated mobile devices.

— LPDDR4. The successor to LPDDR3, officially presented in August 2014 (although the first hardware developments were released back in late 2013). The operating speed, compared to its predecessor, has doubled — up to 3200 MT/s; the frequency has grown to 1600 MHz; and the power consumption has decreased by 40%. In addition, the data transfer format has changed — in particular, two 16-bit buses are used instead of one 32-bit, and some security improvements have been introduced into the standard. This memory can be found in some mid-range smartphones. — LPDDR4x. An improved version...of LPDDR4 with reduced power consumption — the standard uses a voltage of 0.6 V instead of 1.1 V. In addition, some improvements have been implemented in this type of RAM, aimed at increasing the speed (it reaches 4266 MT/s) and general optimization of operation — for example, a single-channel mode has appeared for undemanding applications. Thanks to such characteristics, this version of memory has become much more widespread than the original LPDDR4. It can be found in mid-range and top-end devices.

— LPDDR5. Further development of "mobile" RAM, officially announced in early 2019. The operating speed in this version has been increased to 6400 MT/s, a differential signal format has been introduced to improve resistance to interference and errors, and dynamic frequency and voltage control has been implemented to reduce power consumption. The use of such memory modules is typical mainly for high-end smartphones.

— LPDDR5x. A more energy-efficient and faster version of LPDDR5 RAM. Its data transfer rate has been increased to 8533 MT/s, and the peak throughput indicator is up to 8.5 Gbps. The number of memory banks per channel in LPDDR5x is always 16. RAM of this standard is typical for advanced smartphones of the highest grade.

— LPDDR5T. T — means "turbo". The operating speed of the LPDDR5T standard "RAM" has been increased to 9600 MT/s, and devices with such memory modules are approximately 13% faster compared to LPDDR5X. The memory operates in the low voltage range from 1.01 to 1.12 V. The corresponding modules are aimed at use in top mobile devices.

Test results

The test results are specified either by a younger model in a line or a particular model, made for a better understanding performance of phone models if you compare phones against these parameters. For example, the 128 GB model has test results, and the 256 GB model has no information on the network, and in both models you will see the same value that will give an understanding of the overall performance of the device. But if the editorial office has information for each model individually, then each model will have its test results filled out, and the model with bigger RAM will have bigger values.

AnTuTu Benchmark

The result shown by a device when undergoing a performance test (benchmark) in AnTuTu Benchmark.

AnTuTu Benchmark is a comprehensive test designed specifically for mobile devices, primarily smartphones and tablets. It evaluates the efficiency of the processor, memory, graphics, and input/output systems, providing a clear impression of the system's capabilities. The higher the performance, the more points are awarded. Smartphones that score over 900K points are considered high-performance according to the AnTuTu ranking.

Like any benchmark, this test does not provide absolute precision: the same device can show different results, usually with deviations within 5-7%. These deviations depend on various factors unrelated to the system itself, such as the device's load from third-party programs and the ambient temperature during testing. Therefore, significant differences between two models can only be noted when the gap in their scores exceeds this margin of error.

Geekbench

The result shown by a device when undergoing a performance test (benchmark) in Geekbench.

Geekbench is a specialized benchmark designed for processors. Since version 4.0, it also includes tests for graphics processors, and by the end of 2019, version 5 of the benchmark was released. Typically, the specifications for portable gadgets include data specifically for the CPU. During testing, Geekbench simulates workloads that occur during real-world tasks, evaluating both single-core performance and the efficiency of multi-core operations. This provides a solid overview of the processor's capabilities in everyday use. Additionally, Geekbench is cross-platform, allowing for comparisons between the CPUs of different devices (smartphones, tablets, laptops, PCs). In reference materials, only the multi-core test results for the processor are usually provided.

Sling Shot Extreme (OpenGL ES 3.1 / METAL)

The result shown by the phone in the 3DMark Sling Shot Extreme (OpenGL ES 3.1 / METAL) test.

3DMark is a series of benchmarks originally designed to test the GPU performance of a device; later, these tests were supplemented by checking the capabilities of the CPU and RAM in general. Specifically, Sling Shot Extreme is one of the latest versions of 3DMark, released in 2016 for testing high performance devices and gaming smartphones, for which earlier tests are no longer enough. One of the key features of the test is support of resolutions up to 2560x1440 (for predecessors, the maximum resolution did not exceed 1920x1080, or even 1280x720). In addition, as the name suggests, the test supports the OpenGL ES 3.1 (for Android) and Metal API (for iOS) specifications used in modern mobile video chips; and since mid-2019, support of the 64-bit CPU architecture has also been added to it. Thus, 3DMark Sling Shot Extreme allows you to reliably evaluate even the most performant and advanced modern smartphones. At the same time, the assessment is traditionally indicated in points: the more points, the better the result.

The results of any benchmark are usually quite approximate, because they depend on many factors not directly related to the system. The error due to these factors is usually about 5 – 7%; therefore, it is possible to speak of a significant difference between the two models only if the difference in their indicators goes beyond those 5 – 7%.

Additional lens

Specs of the additional lens installed in the device.

An additional lens is the one that is not covered by any of the three categories described above (main, tele-, ultra-wide), but is used directly for taking photos and videos (that is, it is not an auxiliary one — see below). In this case, the specific purpose of such a lens may be different. In some models, modules for a specific purpose are installed — for example, "portrait" optics with a longer focal length than the main module (however, less than that of a telephoto lens). In other devices, you can find additional modules of standard specialization — for example, the second telephoto lens, which differs in specs from the main one; data on such modules is also given here.

The meaning of particular specifications is described in detail above, in the paragraphs regarding the main lens, telephoto lens and ultra-wide optics. Here we note some nuances that directly relate to additional modules or are worth re-mentioning:
  • Resolution (in megapixels, MP). In itself, high resolution only increases the detail and does not necessarily improve the quality of the picture. However, numerous MPs is often a sign of an advanced camera, where various additional solutions are used to improve quality.
  • Aperture. Written as a fraction, such as f/1.9; the larger the number in the designation, the lower the aperture ratio and the worse the light transmission of the lens. These optics are more expensive, but...offer better image quality and more overall performance.
  • Focal length. Specified in millimetres. Directly affects the viewing angle and specialization of the lens: short focal lengths are typical for "wide-angle" and lenses for general use, significant — for "portrait" and telephoto lenses.
  • Sensor size. Specified in fractions of an inch, such as 1/2.8". A larger sensor is more expensive and takes up more space, but provides better image quality.
  • OIS. An abbreviation for "optical image stabilization". See below for more details on such systems, but here we note that they are typical mainly for advanced cameras: optical stabilization is more complicated and expensive than digital, but more effective.
Doogee V30T often compared
Doogee V Max often compared