United Kingdom
Catalog   /   Computing   /   Monitors

Comparison Asus ProArt PA278CGV 27 " vs Dell S2722DC 27 "

Add to comparison
Asus ProArt PA278CGV 27 "
Dell S2722DC 27 "
Asus ProArt PA278CGV 27 "Dell S2722DC 27 "
Compare prices 11Compare prices 8
TOP sellers
Product typegamingmonitor
Size27 "27 "
Screen
Panel typeIPSIPS
Surface treatmentmatteglossy (anti-glare)
Resolution2560x1440 (16:9)2560x1440 (16:9)
Pixel size0.23 mm0.23 mm
Response time (GtG)5 ms4 ms
Refresh rate144 Hz75 Hz
Refresh rate (vert.)24 – 144 Hz
Refresh rate (hor.)30 – 222 kHz
Vertical viewing angle178 °178 °
Horizontal viewing angle178 °178 °
Brightness400 cd/m²350 cd/m²
Static contrast1 000:11 000:1
Colour depth8 bit + FRC
Colour space (sRGB)100 %99 %
Colour space (DCI P3)95 %
HDRDisplayHDR 400
TÜV Rheinland certificate
Connection
Video transmission
DisplayPort v 1.4
HDMI x2
v 2.0
Adaptive-Sync support
USB type C (DisplayPort Alt Mode)
 
HDMI x2
v 1.4
 
USB type C (DisplayPort Alt Mode)
Power Delivery
Charger power90 W65 W
Connectors (optional)
mini-Jack output (3.5 mm)
mini-Jack output (3.5 mm)
Features
Features
PBP (Picture by Picture)
Flicker-Free
AMD FreeSync Premium
CalMAN certification
 
Flicker-Free
AMD FreeSync
 
Portrait pivot
Screen rotation
Height adjustment
Speakers
Sound power
4 W /2x2W/
6 W /2x3 W/
USB hub 3.x
 /4/
 /2/
Fast charge
Game Features
aim
 
General
Slim bezel
Wall mountVESA 100x100mmVESA 100x100mm
Power consumption20 W
Dimensions (WxHxD)
615x374x228 mm /with stand/
612x400x175 mm
Weight
8.5 kg /with stand/
7.16 kg
Color
Added to E-Catalogaugust 2023november 2021

Product type

— Monitor. In this case, we mean monitors designed mainly for classic use — as a screen for a personal computer. Their functionality can be quite diverse — from entry-level screens with 1-2 inputs for connection to multifunctional models with built-in speakers, TV tuners, remote controls, etc. The same applies to the diagonal. Most traditional monitors are in the 22-30" range (these sizes are currently considered optimal for screens whose distance is determined by the width of the desktop), but there are also large-format devices whose diagonal can exceed 32".

Portable monitor. A separate caste of monitors designed to connect to laptops. They are distinguished by small diagonal sizes, not exceeding 18", a thin format and the absence of a stand, as a result of which they look like tablets.

Game monitor. Monitors considered optimal for gaming. These are not necessarily devices specially designed for this application (although there are some); however, all gaming monitors have a number of features that gamers will surely appreciate. Firstly, the resolution (see below) in such models is not lower than Full HD. Secondly, the matrices have a low response time — less than 5 ms, which allows high-quality display of dynamic scenes; and the frame rate often reaches 120 Hz or even more (although there are quite modest values). Thirdly, devices of this type often have special gaming (see below...) and similar features — in particular, most gaming monitors are compatible with FreeSync and/or G-Sync technologies (see "Features").

LCD panel. One of the key features that distinguish LCD panels from conventional monitors is the wide variety of connectors: in addition to video outputs, it includes auxiliary ports such as LAN or RS-232 (see "Connectors (Optional)"). It is also believed that the LCD panel must be hung on the wall without fail, but this has its own specifics. Many devices of this type are really made only for wall installation, and some models can be combined into a video wall that broadcasts one image to several screens. But besides this, there are solutions equipped with stands and allowing desktop use (and sometimes even originally designed for it). At the same time, the first variety, "purely wall-mounted", can have almost any diagonal — including modest 21 – 22 "; but the dimensions of "desktop" panels start at 32", moreover, they most often have advanced matrices like IPS. Anyway, such screens are used mainly in rather specific areas. So, wall mounting is convenient for organizing information boards at stations, airports, shopping centers, for use at exhibition stands, conference rooms, etc. Desktop models are useful for those for whom large size and high image quality are of key importance . Also among them there are many devices with touch screens, which further expands the user experience.

— Plasma panel. These types of devices are similar in many ways to the LCD panels described above, but they also have some key differences. The main one is the technology used for the screen: instead of a liquid crystal matrix, plasma panels use cells filled with a special gas and covered with a luminous substance — a phosphor. This technology provides very high image quality, with deep colour reproduction and contrast. At the same time, it is not easy to create a small plasma cell, which is why the pixels on this type of screens have more stringent restrictions on the minimum size. As a result, plasma panels, in principle, are never small — 42 "is considered almost the minimum size for such a screen. In addition, the reverse side of the described advantages is also a slightly shorter service life and higher cost than LCD matrices. As a result," plasma" has not received much distribution, such devices are bought mainly not for "public", but for personal use — for example, as a home theater screen or as equipment for an advanced gamer.

Video wall. Models designed to build video walls. Such a wall is an array of numerous closely arranged screens that can work in concert and produce a large overall image; each screen is responsible for its own fragment of the picture. Such designs are used, in particular, at concerts and other public events, where there are no longer enough separate screens. The main feature of monitors for video walls is a very thin frame — due to this, the boundaries between the segments are almost invisible, and the image is perceived as a whole.

Information display. Narrow-purpose equipment, assuming a stationary method of installation. Such displays are mounted on the wall, built into special niches or openings. They are intended to work as digital signage, broadcast advertising materials, play various video content. Individual instances of information displays can support touch control, have a pre-installed Smart operating system and other "smart" features. As a rule, specialized proprietary software is used to control the operation of such equipment.

Surface treatment

Modern monitors can use displays with both glossy and matte screen surfaces. A matte surface is in some cases more preferable due to the fact that on a glossy screen, when exposed to bright light, noticeable glare appears, sometimes interfering with viewing. On the other hand, glossy screens offer better picture quality, higher brightness, and richer colours.
Due to the development of technology, monitors with a special anti-glare coating have appeared on the market, which, while maintaining all the advantages of a glossy screen, creates significantly less visible glare in bright ambient light.

Response time (GtG)

The time spent by each individual point on the monitor to switch from one state to another. The shorter the response time, the faster the sensor responds to the control signal, the lower the delay and the better the image quality in dynamic scenes.

Note that in this case, the grey-to-grey method is used (the turn-on time is from 10% grey to 90%). It is worth paying attention to this parameter if the monitor is specially purchased for dynamic games, watching movies and other applications associated with fast movement on the screen. And even in such cases, a reaction speed of 8 ms is quite enough; a further decrease in response time does not affect the quality of the perceived image.

Refresh rate

The maximum frame rate supported by the monitor at the recommended (maximum) resolution.

The higher the frame rate, the smoother the movement on the screen will look, the less noticeable jerks and blurring will be on it. Of course, the actual image quality also depends on the video signal, but for normal viewing of video at a high frame rate, the monitor must also support it.

When choosing this option, keep in mind that at lower resolutions than the maximum, the supported frame rate may be higher. For example, a model with a 1920x1080 matrix and a claimed frame rate of 60 Hz at a reduced resolution can give 75 Hz; but the 75Hz frame rate is only listed in the specs if it is supported at the monitor's native (maximum) resolution.

Also note that a high frame rate is especially important for gaming models (see "Type"). In most of them, this figure is 120 Hz and higher; monitors with a frequency of 144 Hz are considered the best option in terms of price and quality, however, there are also higher values — 165 Hz and 240 Hz. And monitors at 100 Hz can be both inexpensive gaming models and advanced home ones.

You can evaluate all the frame rates at which this monitor is capable of operating by the ver...tical frequency claimed in the specifications (see below).

Refresh rate (vert.)

The vertical refresh rate supported by the monitor.

Initially, the term "sweep frequency" was used in the characteristics of CRT monitors that work with an analogue signal. By tradition, it continues to be used for LCD matrices, however, for such screens, the refresh rate is actually the frame rate. See above for more on frame rate; here we note that in this case it is not the maximum frequency that is indicated, but the frequency range supported by the monitor — from the minimum to the maximum. This allows you to evaluate compatibility with certain video cards and operating modes: the frame rate of the video signal must match the frame rate of the monitor (or at least be a multiple of it), otherwise twitches and other unpleasant phenomena are possible.

It is worth noting that the monitor usually does not support any refresh rate from the range given in the specifications, but only certain standard values — for example, 50 Hz, 60 Hz and 75 Hz for the 50 – 75 Hz model.

Refresh rate (hor.)

The horizontal refresh rate of the image on the monitor screen.

This parameter was relevant for CRT monitors, in which the image was formed by an electron beam that "ran through" each individual line on the screen and illuminated the pixels. The horizontal refresh rate described the number of lines drawn per second. However, modern LCD matrices do not use a scan, but a full-frame image. Therefore, today this parameter is rarely given in monitors, and it describes the maximum horizontal frequency in an analogue video signal (for example, via the VGA interface), with which the screen can work normally.

Brightness

The maximum brightness provided by the monitor screen.

Choosing a monitor with high brightness is especially important if the device is going to be used in bright ambient light — for example, if the workplace is exposed to sunlight. A dim image can be "dampened" by such lighting, making work uncomfortable. In other conditions, the high brightness of the screen is very tiring for the eyes.

Most modern monitors give out about 200 – 400 cd / m2 — this is usually quite enough even in the sun. However, there are also higher values: for example, in LCD panels (see "Type") the brightness can reach several thousand cd/m2. This is necessary taking into account the specifics of such devices — the image must be clearly visible from a long distance.

Colour depth

The colour depth supported by the monitor.

This parameter characterizes the number of shades that the screen can display. And here it is worth recalling that the image in modern monitors is based on 3 basic colours — red, green, blue (RGB scheme). And the number of bits is indicated not for the entire screen, but for each base colour. For example, 6 bits (the minimum colour depth for modern monitors) means that the screen is capable of producing 2 ^ 6, that is, 64 shades of red, green and blue; the total number of shades will be 64 * 64 * 64 = 262,144 (0.26 million). An 8-bit colour depth (256 shades for each base colour) already gives a total of 16.7 million colours; and the most advanced modern monitors support 10-bit colour, allowing you to work with more than a billion shades.

Screens with support for FRC technology are worth a special mention; nowadays, you can find models marked " 6 bit + FRC " and " 8 bit + FRC ". This technology was developed to improve picture quality in situations where the incoming video signal has a greater colour depth than the screen, such as when 10-bit video is fed to an 8-bit matrix. If such a screen supports FRC, the picture on it will be noticeably better than on a regular 8-bit monitor (although somewhat worse than on a full-fledged 10-bit monitor, but “8 bit + FRC” screens are much...cheaper).

High colour depth is important primarily for professional graphics and other tasks that require high colour fidelity. On the other hand, such features significantly affect the cost of the monitor. In addition, it is worth remembering that the quality of colour reproduction depends not only on the colour depth, but also on other parameters — in particular, colour gamut (see below).

Colour space (sRGB)

Monitor colour gamut Rec. 709 or sRGB.

Any colour gamut is indicated as a percentage, however, not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the monitor's capabilities, the better its colour reproduction.

Nowadays, sRGB is actually the standard color model adopted for computer technology; This is what is used in the development and production of most video cards. For television, the Rec. standard, similar in parameters, is used. 709. In terms of the range of colors, these models are identical, and the percentage of coverage for them is the same. In the most advanced monitors it can reach or even exceed 100%; These are the values that are considered necessary for high-end screens, incl. professional.
Asus ProArt PA278CGV often compared
Dell S2722DC often compared