United Kingdom
Catalog   /   Computing   /   Networking   /   Switches
Switches TP-LINK 

Articles, reviews, useful tips

All materials
Category brands reviews switches
Rating of brands from switches section based on reviews and ratings of site visitors
05.2024
Rating switches (may)
Popularity rating switches is based on integrated statistics on interest shown by Internet audience
Power over twisted pair: the essentials of Power over Ethernet
Key Information about Power over Ethernet to Network Endpoints

Switches: specifications, types

Type

Unmanaged. The simplest kind of switch that does not have, as the name suggests, the ability to manage; and the possibilities of monitoring the state of the device are usually limited to the simplest indicators in the form of light bulbs (power supply, port activity). The advantages of such models are battery life, ease of use and low cost. The main disadvantage of this type is obvious — the impossibility of configuring the operation parameters. Unmanaged switches are well suited for small LANs like a home or small office where little administration tricks are required; but for large organizations they should not be used.

Customizable. This category includes switches that allow you to change some of the operating parameters. At the same time, the possibilities for such changes are much narrower than in managed models, and the matter is usually limited to disabling individual ports, switching standard speeds for Ethernet connectors (for example, from 100 Mbps to 10 Mbps) and simple monitoring tools like browsing the network statistics. In addition, after reconfiguration, the device, usually, needs to be rebooted — in other words, it is impossible to control the operation of the switch on the fly. However, professional models designed for large networks can also belong to this type.

Managed 2 levels. The term "managed" means that the switch has the ab...ility to reconfigure "on the fly" — in contrast to the configurable models described above. In addition, the overall functionality of such devices in most cases is noticeably wider. And "layer 2" means that the device supports only the second layer of the OSI network model — the channel, which is responsible for physical addressing. In fact, this means that the switch is able to work with the MAC addresses of connected devices, but IP addressing is beyond its capabilities.

— Managed 3 levels. A kind of managed switches (see above) that supports the third level of the OSI network model. This layer is responsible for logical addressing and route definition, which allows the device to work with IP addresses. Due to this, models of this type are considered the most advanced, they often provide not only the traditional features for "switches", but also individual functions of routers. On the other hand, the abundance of features significantly affects the price. These switches are commonly used in data centers, telecommunications companies, and other professional networking environments; it hardly makes sense to purchase such a device for a home or small office.

Mount

The form factor determines how the switch is installed.

Desktop. Devices designed to be placed on a flat surface such as a countertop or shelf; some models also allow hanging on the wall. Significantly easier to install than rack or DIN rail equipment (see below), but most desktop switches are entry-level, maximum mid-range. This is because desktop placement is less secure than rack or rail mounting, making it less suitable for professional equipment.

Rack mounted. Switches designed for installation in a telecommunications rack. To do this, the design provides for an appropriate set of fasteners, and the body is made in a standard size. This size is quite large, which allows for numerous network ports; and the rack mounting itself is reliable. Therefore, this option is used by most professional-level switches, although there are also relatively simple models with this installation method.

Mounted on a DIN rail. Switches mounted on a standard DIN rail. Such rails are used as mounting fixtures, in particular, on electrical panels and in cabinets for special equipment, however, if desired, they can be fixed to any vertical surface, including a regular wall. Specifically, "switches" with a similar installation, as well as rack-mounted ones, are mainly of a professional level; however, rail-mounted models are much smaller, resulting in more m...odest functionality and fewer ports. Also note that they are usually executed in a vertical rather than a horizontal layout.

Street (on the mast). Switches that can be installed outdoors. A characteristic feature of such equipment is the enhanced protection of the case, which protects the internal components from dust, moisture, high and low temperatures, etc. winter application (if you need a frost-resistant model, you can use the "Operating temperature" list below). However, if the equipment needs to be placed on the street (or in a room where the conditions are not very different from the street ones), then it is definitely worth choosing from this category.

Bandwidth

The bandwidth of a switch is the maximum amount of traffic that it can handle. Specified in gigabits per second.

This parameter directly depends on the number of network ports in the device (excluding Uplink). Actually, even if the bandwidth is not given in the specifications, it can still be calculated using the following formula: the number of ports multiplied by the bandwidth of an individual port and multiplied by two (since both incoming and outgoing traffic are taken into account). For example, a model with 8 Gigabit Ethernet connectors and 2 SFP ports will have a bandwidth of (8*1 + 2*1)*2 = 20 Gbps.

The choice for this indicator is quite obvious: you need to evaluate the expected traffic volumes in the serviced network segment and make sure that the switch's bandwidth will cover it with a margin of at least 10-15% (this will give an additional guarantee in case of emergency situations). At the same time, if you plan to often work at high, close to maximum, loads, it will not hurt to clarify such a characteristic as the internal bandwidth of the switch. It is usually given in a detailed technical description, and if this value is less than the total throughput, serious problems may arise under significant loads.

MAC address table size

The maximum number of MAC addresses that can be stored in the Switch's memory at the same time. Specified in thousands, for example, 8K — 8K.

Recall that the MAC address is the unique address of each individual network device used in physical routing (at layer 2 of the OSI network model). Switches of all types work with such addresses. And it is worth choosing a switch according to the size of the table, taking into account the maximum number of devices that are supposed to be used with it (including based on the possible expansion of the network). If the table is not enough, the switch will overwrite new addresses over the old ones, which can noticeably slow down the work.

Fast Ethernet

The number of standard RJ-45 network connectors in the Fast Ethernet format provided in the design of the switch.

Fast Ethernet is the most modest of the wired connection formats over a twisted-pair network cable nowadays — it provides data transfer rates up to 100 Mbps. However, even this speed is often enough for relatively simple tasks that are not associated with large amounts of data. Therefore, this interface is still widely used in modern switches.

As for the number of connectors, it corresponds to the number of network devices that can be connected to the "switch" directly, without the use of additional equipment. In the case of Fast Ethernet, the number of connectors up to 10 inclusive is considered relatively small, from 10 to 25 — average, and the presence of more than 25 ports of this type is typical for professional-level models.

Gigabit Ethernet

The number of standard Gigabit Ethernet RJ-45 network connectors provided in the design of the switch.

As the name suggests, these connectors provide data transfer rates up to 1 Gbps. Initially, Gigabit Ethernet was considered a professional standard, and even now the real needs for such speeds arise mainly when performing special tasks. Nevertheless, even relatively inexpensive computers are now equipped with gigabit network adapters, not to mention more advanced technology.

As for the number of connectors, it corresponds to the number of network devices that can be connected to the "switch" directly, without the use of additional equipment. In the case of Gigabit Ethernet, the number of connectors up to 10 inclusive is considered relatively small, from 10 to 25 — average, and the presence of more than 25 ports of this type is typical for professional-level models. At the same time, it is worth noting that in some "switches" individual connectors of this type are combined with optical SFP or SFP + (see below). Such connectors are marked "combo" and are taken into account both in the RJ-45 count and in the SFP/SFP+ count.

2.5 Gigabit Ethernet

The number of standard network connectors RJ-45 format 2.5 Gigabit Ethernet provided in the design of the switch. These ports are backwards compatible with lower speeds. This type of ports can be used in conjunction with NAS servers or, for example, with routers that support Wi-Fi 6/6E, where this format has also become widespread.

5 Gigabit Ethernet

The number of standard network connectors LAN format 5 Gigabit Ethernet, provided in the design of the switch.

As the name suggests, the format provides connection speeds up to 5 Gbps. In this case, the number of connectors corresponds to the number of devices that are supposed to be directly connected to the switch via this interface at the same time. These ports are backwards compatible and with lower speeds.

10 Gigabit Ethernet

The number of standard network connectors RJ-45 format 10Gigabit Ethernet, provided in the design of the switch.

This format belongs to professional ones: it provides speeds up to 10 Gbps (which is reflected in the name) and is intended mainly for tasks related to processing large volumes of traffic. Nevertheless, Gigabit Ethernet support is now found even in PC and laptop network controllers, not to mention more specialized equipment. And the number of connectors corresponds to the number of devices that can be directly connected to the switch via this interface at the same time. Note that in some "switches" individual connectors of this type are combined with optical SFP or SFP + (see below). Such connectors are marked "combo" and are taken into account both when counting RJ-45 and when counting SFP / SFP +.

SFP (optics)

The number of optical network ports of the SFP standard provided in the design of the switch. We emphasize that we are talking about "ordinary" SFPs; SFP+ data is usually listed separately.

Specifically, in switches, the marking “SFP” usually means a connector for fiber with a connection speed of 1 Gbps. Technically, this is not much compared to RJ-45 speeds; however, this connection format has a number of advantages. One of the main ones is a greater effective range: the mentioned gigabit standard used in switches works with a cable length of up to 550 m, and by the standards of fiber, this is still very little. True, the cable itself is sensitive to kinks and requires quite delicate handling; on the other hand, it is completely immune to electromagnetic interference. On the other hand, in general, the SFP format is noticeably less popular in network equipment than RJ-45; therefore, there are few ports of this type even in advanced devices. So, solutions for 2 or 4 SFP connectors are most widely used, although there are more - 6, 8, or even 10 or more. It is also worth considering that the so-called combo connectors can be used in switches, combining SFP and RJ-45; the presence of such ports is specified in the notes, they are taken into account both in the calculation of RJ-45 and in the calculation of SFP.

To clarify, Uplink inputs also often use this type of connector; however, their...number is specified separately (see below).

SFP+ (optics)

The number of optical SFP+ ports provided in the design of the switch. Let's clarify right away that we are talking about ordinary network ports; Uplink inputs can also use this interface, however their number is specified separately even in this case (see below).

The general advantages of optical fiber over conventional Ethernet cable are longer communication range and insensitivity to electromagnetic interference. Specifically, SFP+ is a development of the original SFP standard; in switches, such connectors typically operate at a speed of 10 Gbps. As for the number of such ports, for all its advantages, fiber optics in network equipment is still used quite rarely. Therefore, the most common switches are 1 - 2, less often 4 SFP + connectors, although there are more. It is also worth considering that the so-called combo connectors can be used in switches, combining SFP + and RJ-45; the presence of such ports is specified in the notes, they are taken into account both in the calculation of RJ-45 and in the calculation of SFP+.

SFP28 (optics)

The number of optical SFP28 ports provided in the design of the switch. Let's clarify right away that we are talking about ordinary network ports; Uplink inputs can also use this interface, however their number is specified separately even in this case (see below).

The general advantages of optical fiber over conventional Ethernet cable are longer communication range and insensitivity to electromagnetic interference. Specifically, SFP28 is a further development of the original SFP standard; in switches, such connectors operate at speeds up to 25 Gb / s. As for the number of such ports, for all its advantages, fiber optics in network equipment is still used quite rarely. It is also worth considering that the so-called combo connectors can be used in switches, combining SFP28 and RJ-45; the presence of such ports is specified in the notes, they are taken into account both in the calculation of RJ-45 and in the calculation of SFP28.

QSFP / QSFP+

The number of optical QSFP or QSFP+ ports provided in the design of the switch. Let's clarify right away that we are talking about ordinary network ports; often they can be used for stacking.

The general advantages of optical fibre over conventional Ethernet cable are longer communication range and insensitivity to electromagnetic interference. Specifically, QSFP or QSFP+ is a development of the original SFP standard; in switches, such connectors typically operate at speeds of 40 Gbps, the standard assumes speeds up to 112 Gbps. As for the number of such ports, for all its advantages, fibre optics in network equipment is still used less often than Ethernet. Therefore, a plentiful number of such ports in the switch cannot be found, mainly 2 – 6 ports.

Uplink

The number of Uplink connectors provided in the design of the switch.

“Uplink” in this case is not a type, but a connector specialization: this is the name of the network interface through which the switch (and network devices connected to it) communicate with external networks (including the Internet) or network segments. In other words, this is a kind of "gate" through which all traffic from the network segment served by the switch is transmitted further. Uplink, in particular, can be used to connect to a similar "switch" (for horizontal network expansion) or to a higher level device (like a core switch).

Accordingly, the number of Uplink connectors is the maximum number of external connections that the switch can provide without using additional equipment. The specific type of such a connector may be different, but this is usually one of the varieties of LAN or SFP; see "Uplink type" for details.

Uplink type

The type of connector(s) used in the switch as an Uplink interface.

See above for details on such an interface; here we note that the same network ports are usually used as Uplink, as for connecting individual devices to the switch. Here are the main options for such connectors:

- Fast Ethernet - LAN network connector (for "twisted pair") with support for speeds up to 100 Mbit. Such a speed is considered low by modern standards, while the Uplink port puts forward increased bandwidth requirements - after all, traffic from all devices served by the switch goes through it. Therefore, in this role, Fast Ethernet ports are used mainly in inexpensive and outdated models.

- Gigabit Ethernet - LAN connector with support for speeds up to 1 Gb / s. Such a speed is often enough even for a fairly extensive network, while the connectors themselves are relatively inexpensive.

- 2.5 Gigabit Ethernet - LAN connector with support for speeds up to 2.5 Gbps.

- 10Gigabit Ethernet - LAN connector with support for speeds up to 10 Gbps. Such features allow you to work comfortably even with very large volumes of traffic, but they significantly affect the price of the switch. Therefore, this option is rare, mainly in high-end models.

— SFP. Socket for fiber optic cable that supports speeds of about 1 Gb / s. At the same time, over Gigabit Ethernet, which has a similar bandwidth, this connector has one noticeable advantage - a lon...ger connection range (usually up to 550 m).

- SFP+. An evolution of the SFP standard described above. The switches usually provide a connection speed of 10 Gb / s; like the original standard, it noticeably outperforms an Ethernet connection in terms of effective range. On the other hand, the real need for such speeds does not arise very often, and SFP+ is quite expensive. Therefore, the presence of such Uplink connectors is typical mainly for high-end models with a large number of ports.

— SFP28. Another development of SFP with increased throughput up to 25 Gbps.

— QSFP / QSFP+. The fastest SFPs up to 40 Gbps.

We also note that the connectors described above (except perhaps Fast Ethernet) are rarely used as the only type of Uplink input. Combinations of electrical and fiber optic ports - SFP / Gigabit Ethernet and SFP + / 10Gigabit Ethernet - have become noticeably more common. This provides versatility in connection, allowing you to use the type of cable that is most convenient in a given situation; and if necessary, of course, you can use all Uplink inputs at once. However, it is worth considering that in some models, Ethernet and SFP interfaces can be combined in one physical connector. So before buying this nuance does not hurt to clarify separately.

There are also switches that use a combination of two types of SFP - SFP/SFP+; however, there are few such models and they mainly belong to the professional level.

Console port

The switch has a console port. This connector is used to control the device settings from a separate computer, which plays the role of a control panel — a console. The advantage of this format of operation is that access to the functions of the switch does not depend on the state of the network; in addition, special utilities can be used on the console that provide more extensive capabilities than a regular web interface or network protocols (see "Management"). Most often, the console port uses an RS-232 connector.

Control

Management methods and protocols supported by the switch.

SSH. Abbreviation for Secure Shell, i.e. "Safe shell". The SSH protocol provides a fairly high degree of security, because. encrypts all transmitted data, including passwords. Suitable for managing almost all major network protocols, but requires a special utility on the host computer.

Telnet. A network management protocol that provides configuration using a text-based command line. It does not use encryption and does not protect transmitted data, and is also devoid of a graphical interface, which is why in many areas it has been supplanted by more secure (SSH) or more convenient (web interface) options. However, it is still used in modern network equipment.

Web interface. This function allows you to open the management interface of the switch in a common Internet browser. The main convenience of the web interface is that it does not require additional software — a browser is enough (and it is available in any "self-respecting" modern OS). Thus, knowing the device address, login and password, you can manage the settings from almost any computer on the network (unless, of course, otherwise specified in the access parameters).

SNMP. Abbreviation for Simple Network Management Protocol, i.e. "simple network control protocol". It is a stan...dard part of the common TCP/IP protocol on which both the Internet and many local networks are built. It uses two types of software — "managers" on control computers and "agents" on managed computers (in this case, on a router). The degree of security is relatively low, but SNMP can be used for simple management tasks.

Note that this list is not exhaustive — modern switches may provide other management options, for example, support for proprietary utilities and special technologies from the same manufacturer.

Basic features

DHCP server. A feature that makes it easy to manage the IP addresses of devices connected to the switch. Without its own IP address, the correct operation of the network device is impossible; and DHCP support allows you to assign these addresses both manually and fully automatically. At the same time, the administrator can set additional parameters for the automatic mode (range of addresses, maximum time for using one address). And even in fully manual mode, work with addresses is performed only by means of the switch itself (whereas without DHCP, these parameters would also have to be specified in the settings of each device on the network).

Stacking support. The ability to operate the device in stack mode. A stack consists of several switches that are perceived by the network as one “switch”, with one MAC address, one IP address, and with a total number of connectors equal to the total number of ports in all involved devices. This feature is useful if you want to build an extensive network that lacks the capabilities of a single switch, but do not want to complicate the topology.

Link Aggregation. Switch support for link aggregation technology. This technology allows you to combine several parallel physical communication channels into one logical one, which increases the speed and reliability of the connection. Simply put, a switch with such a fun...ction can be connected to another device (for example, a router) not with one cable, but with two or even more at once. The increase in speed in this case occurs due to the summation of the throughput of all physical channels; however, the total speed may be less than the sum of the speeds — on the other hand, combining several relatively slow connectors is often cheaper than using equipment with a more advanced single interface. And the increase in reliability is carried out, firstly, by distributing the total load over individual physical channels, and secondly, by means of "hot" redundancy: the failure of one port or cable can reduce the speed, but does not lead to a complete disconnection, and when the channel is restored, the channel is switched on automatically.
Note that both the standard LACP protocol and non-standard proprietary technologies can be used for Link Aggregation (the latter is typical, for example, for Cisco switches). In addition, there are quite a few alternative names for this technology — port trunking, link bundling, etc.; sometimes the difference is only in the name, sometimes there are technical nuances. All these details should be clarified separately.

VLAN. Support of the VLAN function by the switch — virtual local area networks. In this case, the meaning of this function is the ability to create separate logical (virtual) local networks within the physical "local area". Thus, it is possible, for example, to separate departments in a large organization, creating for each of them its own local network. The organization of VLAN allows you to reduce the load on network equipment, as well as increase the degree of data protection.

— Protection against loops. The switch has a loop protection function. The loop in this case can be described as a situation where the same signal is launched in the network in an endless loop. This may be due to incorrect cable connection, the use of redundant links and some other reasons, but anyway, such a phenomenon can “put down” the network, which means it is highly undesirable. Security prevents loops, usually by disabling looped ports.

— Limiting the speed of access. The ability to limit the data exchange rate for individual switch ports. Thus, it is possible to reduce the load on the network and prevent the "clogging" of the channel by individual terminals.

Note that the matter is not limited to this list: other features may be found in modern switches.

Static

Recall that routing is the definition of the best path through which each data packet can be delivered to the recipient. For this, special tables are used, stored in the memory of the control network device with the routing function. According to the method of filling these tables, this procedure is divided into two main varieties — static and dynamic.

Static routing is a method in which all data routes (entries in the routing table) are manually written by the administrator; this applies both to the initial creation of the table and to making changes to it when changes are made to the network configuration. The main advantage of this method is the minimum load on the switch processor, which has a positive effect on the speed and reliability of the network. The main disadvantages of static routing are associated with the need for manual control. So, the larger the network, the more complex and time-consuming it is to manage it; Administrator's inattention can become an additional cause of failures; and diagnosing some problems is noticeably more difficult — for example, if there is a failure at the link layer, the static route remains visible as active, although no data is transmitted.

Standards

Static routing is carried out according to the standard scheme, but different protocols are used for dynamic routing. The idea of dynamic is that the route table is constantly edited programmatically, in automatic mode. To do this, network devices (more precisely, routing programs running on them) exchange service information with each other, on the basis of which optimal addresses are written to the table. One of the fundamental concepts of dynamic routing is a metric — a complex indicator that determines the conditional distance to a specific address (in other words, how close this or that route is to the optimal one). Different protocols use different ways to define and share metrics; here are some of the most common options:

R.I.P. One of the most widely used dynamic routing protocols; was first applied back in 1969 on the ARPANET, which became the forerunner of the modern Internet. Refers to the so-called distance-vector algorithms: the metric in the RIP protocol is indicated by the distance vector between the router and the network node, and each such vector includes information about the direction of data transfer and the number of "hops" (sections between intermediate nodes) to the corresponding network device. When using RIP, metrics are sent over the network every 30 seconds; at the same time, having received from the "neighbor" data about the nodes known to it, the router makes a number of clarifications and add...itions to this data (in particular, information about itself and about directly connected network devices) and transmits further. After receiving up-to-date data throughout the network, the router selects for each individual node the shortest route from several received alternatives and writes it into the routing table.
The advantages of the RIP protocol include ease of implementation and undemanding. On the other hand, it is poorly suited for large networks: the maximum number of hops in RIP is limited to 15, and the complication of the topology leads to a significant increase in service traffic and the load on the computing part of the equipment — as a result, the actual network performance decreases. Thus, more advanced protocols such as (E)IGRP and OSPF (see below) have become more common for professional applications.

— IGRP. A proprietary routing protocol created by Cisco for autonomous systems (in other words, local networks with a single routing policy with the Internet). Also, like RIP (see above), it refers to distance vector protocols, however, it uses a much more complicated procedure for determining the metric: it takes into account not only the number of hops, but also delay, throughput, actual network congestion, etc. In addition, the protocol implements a number of specific mechanisms to improve communication reliability. Due to this, IGRP is well suited even for fairly complex networks with an extensive topology.

— EIGRP. An improved and modernized successor to the IGRP protocol described above, developed by the same Cisco. Created as an alternative to OSPF (see below), it combines the properties of distance vector protocols and standards with link state tracking. One of the main advantages over the original IGRP was the improvement in the algorithm for disseminating data about changes in the topology in the network, due to which the probability of looping (characteristic of all distance vector standards) was reduced to almost zero. And among the differences between this protocol and OSPF, higher performance and a more advanced algorithm for calculating the metrics are claimed with less configuration complexity and resource requirements.

OSPF. An open autonomous system routing protocol created by the IETF (Internet Design Council) and first implemented in 1988. Refers to protocols with link state tracking, uses the so-called Dijkstra algorithm (algorithm for finding the shortest paths) to build routes. The OSPF routing process is as follows. Initially, the router communicates with similar devices, establishing a "neighbor relationship"; neighbors are routers within the same autonomous zone. Then the neighbors exchange metrics among themselves, synchronizing the data, and after such synchronization, all routers receive a complete database of the state of all links in the network (LSDB). Already on the basis of this base, each of these devices builds its own route table using Dijkstra's algorithm. The main advantages of OSPF are high speed (speed of convergence), a high degree of optimization of the use of channels and the ability to work with network masks of variable length (which, in particular, is especially convenient with a limited resource of IP addresses). The disadvantages include the exactingness of the computing resources of routers, a significant increase in load with numerous such devices in the network, and the need to complicate the topology in large networks, dividing such networks into separate zones (area). In addition, OSPF does not have clear criteria for determining the metric: the “cost” of each hop can be calculated according to different parameters, depending on the switch manufacturer and the settings chosen by the administrator. This expands the possibilities for configuring routing and at the same time greatly complicates this procedure.

Modern switches may provide other routing protocols in addition to those described above.

PoE (input)

This feature allows you to supply power over the Ethernet cable to the switch itself. This reduces the number of wires and simplifies power supply, which is especially convenient if the device is installed in a hard-to-reach place where there is no outlet nearby, and it is difficult to pull an additional cable.

PoE (output)

The switch supports the Power over Ethernet function.

This feature allows the switch to supply power to network devices over the same Ethernet cable that transmits data. This reduces the number of wires and simplifies power supply, which is especially convenient if the device is installed in a hard-to-reach place where there is no outlet nearby, and it is difficult to pull an additional cable. An example is an IP surveillance camera installed under the ceiling.

The number of PoE outputs may vary. It should also be borne in mind that when several consumers are connected at the same time, specific power restrictions apply; see "Total PoE Power" for details.

Accordingly, such devices are much more expensive than switches without PoE.

PoE outputs

The number of PoE-enabled outputs (see above) provided in the design of the switch. This number corresponds to the maximum number of PoE network devices that can be connected to this model at the same time.

PoE output power

The PoE power (see above) provided by the switch to each individual PoE output. This indicator allows you to evaluate whether a particular device can be connected to such an output — the power consumption of the load in peak mode should not exceed the output power of the port. There are three standards EEE 802.3af ( PoE, ~15W), IEEE 802.3at ( PoE+, ~30W) and IEEE 802.3bt ( PoE++, ≥40W)

Note that when connecting several PoE devices at the same time, the total PoE power must also be taken into account — see below for more details.

Total PoE power

The total output power provided by the switch when powering devices using the PoE standard (see above).

This indicator usually corresponds to the sum of the powers of all outputs — that is, the power of one PoE port, multiplied by their total number. However, the power limits for one output and for the entire switch are somewhat different: if a load with a power equal to the output power of the power supply on this connector can be connected to a single connector, then the total power consumption of all devices connected via PoE should ideally not exceed 75% of the total power supply — this gives an additional guarantee in case of malfunctions. In fact, this means that all PoE outputs cannot be used “to the fullest” at the same time. For example, if there are two such outputs, and one is loaded at 100%, then the second can be loaded with a maximum of 50% — the total power consumption in this case will be the same 75% of the total output. Therefore, a large total power is needed when using the device to the maximum.

PSU

— Built-in. The built-in power supply does not take up space on the outside, but can significantly increase the size and weight of the entire switch. Because of this, this option is quite rare — mainly among rack-mount models (see "Form factor"), where an external unit can create significant inconvenience, as well as among the most powerful desktop switches, for which restrictions on dimensions and weight is not critical.

— External. Theoretically , an external power supply requires additional space, and therefore is not as convenient as an internal one. In fact, most blocks of this type are quite compact in size and are equipped with “plugs” for sockets right on the case — in other words, the block is installed on a socket, and from there the wire stretches to the switch. And the absence of power circuits and transformers inside the case has a positive effect on compactness. Thanks to all this, this option is very popular among desktop models (see "Form factor"), primarily entry-level and mid-level.

— No BP. The absence of a power supply both in the design and in the delivery set is a rather rare case found in three types of switches. The first variety is models that use PoE power (see above) and do not require separate power sources. PoE power is relatively small, so relatively simple devices with a small number of ports fall into this category. The second variety is professional switc...hes, the power supplies for which are sold as separately installed internal modules; such equipment may even provide the possibility of using two PSUs simultaneously (main and backup) and hot-swapping them. The third type — switches with installation on a DIN rail (see "Form factor") and having terminals for connecting a specialized external power source.

Supply voltage

The amount of voltage required by the switch for uninterrupted operation. The power supply voltage of network equipment can vary from 5 V to 230 V, which allows you to power compatible devices from either a low-voltage USB socket on your computer or a standard household outlet. Values in the middle assume that the switch is powered by the appropriate power supply.

Power consumption

Power consumed by network equipment during operation. Knowing the indicator of energy consumption, you can, for example, calculate the battery life of equipment from an uninterruptible power supply or choose a suitable “uninterruptible power supply”.

Operating temperature

The range of operating temperatures allowed for the switch, in other words, the air temperature at which the device is guaranteed to remain operational.

All modern switches are able to normally endure conditions that are comfortable for a person. Therefore, you should pay attention to this indicator, first of all, in cases where the conditions at the installation site of the switch will differ markedly from home / office; a typical example is the placement of ISP equipment in the attic of a multi-storey building. At the same time, special attention should be paid to the lower limit of the temperature range — not every device is able to operate at sub-zero temperatures. If we talk about specific numbers, then for an unheated room frost resistance is desirable at least at the level of -5 °C, and ideally — — 20 °C(although, of course, this also depends on the climate).

Also note that, in addition to temperature, most switches have restrictions on the relative humidity of the air; these restrictions are usually specified in the documentation.
Filters
Price
from£ up to£ 
Brands
Type
Form factor
Fast Ethernet (100 Mbps)
Gigabit Ethernet (1 Gbps)
2.5 Gigabit Ethernet
10 Gigabit Ethernet (10 Gbps)
SFP (optics)
SFP+ (optics)
Other ports
Control
Features
Supply voltage
PoE standard (output)
PoE power (total)
Operating temperature
Clear parameters