United Kingdom
Catalog   /   Sports & Outdoor   /   Cycling & Accessories   /   Bikes

Comparison DYU C6 vs Maxxter City

Add to comparison
DYU C6
Maxxter City
DYU C6Maxxter City
from £649.00 
Expecting restock
Outdated Product
TOP sellers
Type
electric bike
city
electric bike
city
Operating modeelectric + hybridelectric + hybrid
Max weight130 kg110 kg
Frame and suspension
Frame materialaluminiumsteel
Suspensionhardtailhardtail
Suspension type (fork)spring-elastomerspring-elastomer
Seatpost suspension
Wheels and brakes
Wheel size26 "26 "
Rim materialaluminiumaluminium
Rimdouble walldouble wall
Front brakemechanical discrim mechanical (V-brake)
Rear brakemechanical discdrum
Handlebar and transmission
Speeds76
Chainrings11
Freewheel cogs76
Rear derailleurShimanoShimano
Shifter typetriggertrigger
Shifter modelShimanoShimano
Handlebar typestraightstraight
Engine and battery
Max range35 km
Battery capacity12.5 Ah10 Ah
Motor power350 W250 W
Max speed25 km/h25 km/h
Full charge time8 h8 h
Driverearrear
Battery arrangementunder saddleunder saddle
General
Equipment
mudguards
spring saddle
chain guard
kickstand
carrier
handlebar basket
bell
lighting equipment
mudguards
spring saddle
chain guard
kickstand
carrier
 
 
lighting equipment
Weight27 kg
Color
Added to E-Catalogmay 2023june 2018

Max weight

The maximum load allowed for a bicycle is, in other words, the maximum weight that it can normally carry in normal use. Of course, when calculating the load, the weight of both the cyclist himself and the additional load that he carries with him is taken into account.

The permissible load must definitely not be exceeded: even if the bike does not break down immediately, off-design loads can weaken the structure, and an accident can occur at any time. Also note that it is desirable to have a certain weight margin — at least 15 – 20 kg: this can be useful in case of transporting heavy loads and will give an additional guarantee in emergency situations (for example, when a wheel gets into a pit). Considering that the average weight of an adult is about 70 – 80 kg, bicycles with a permissible load of up to 100 kg can be classified as "lightweights", from 100 to 120 kg — to the middle category, more than 120 kg — to "heavy trucks".

Frame material

Steel. Steel is distinguished by high strength and rigidity, in terms of resistance to deformation, it noticeably surpasses other alloys and is inferior only to carbon fiber. At the same time, such frames dampen vibrations well, are inexpensive, and in the event of a breakdown, they are easily repaired. On the other hand, steel is heavy, three times heavier than aluminium and twice as heavy as titanium; therefore, such frames are found mainly among inexpensive mountain and city bikes, for which a lot of weight is not critical. It is also worth considering that this material is susceptible to corrosion if the protective coating is damaged.

Chromium molybdenum steel(Cro-Mo). An advanced variation of the steel described above. By themselves, chromium-molybdenum alloys have high strength and reliability, and frames made from them can have different wall thicknesses (depending on the load that a particular section is subjected to) — this allows you to slightly reduce weight. Thanks to this, Cro-Mo alloys are found even among fairly advanced road bikes, and they are also popular in touring models. At the same time, such frames cost much more than “ordinary” steel ones.

Aluminium. Actually, bicycles do not use pure aluminium, but various alloys based on it. They differ somewhat in characteristics, but they have a number of common features, the main of whi...ch is low weight combined with good strength characteristics. Due to this, aluminium alloys are widely used in road bikes, as well as in touring mountain bikes (see “Intended Use”). The main disadvantage of these materials is rigidity: they absorb vibrations worse than steel, which is why they are poorly suited for models without shock absorption (see below), and with a strong impact, such a frame will break rather than bend.

Carbon. Resin-bonded carbon fiber composite. It is used in high-end bicycles, as it is very expensive, but it is characterized by very high strength combined with low weight. Moreover, the properties of carbon fiber make it possible to increase strength not just in certain areas, but in certain directions, which contributes to even greater reliability. Note that carbon frames can be either solid (monolithic) or composite — in the latter case, individual elements are connected by metal parts, which reduces the cost, but makes the structure susceptible to corrosion. It is also worth considering that the quality of carbon in general depends on the price category of the bike, and relatively inexpensive frames can be sensitive to strong point impacts. This material is almost impossible to repair.

— Titan. A fairly advanced material that combines high strength, elasticity (which provides soft vibration damping), corrosion resistance and very low weight. However, the cost of such frames is quite high, and therefore they are used mainly in premium mountain and road bikes.

— Magnesium alloy. This material is notable primarily for its very low weight (many times lighter than aluminium), while it has good stiffness and elasticity characteristics, dampens vibrations well, and its price is relatively low. At the same time, magnesium alloys have a number of significant drawbacks. In particular, they do not tolerate impacts, especially point impacts, and are also extremely sensitive to corrosion even with minor damage to the protective coating, which is why such frames are very demanding for care and storage.

Seatpost suspension

The presence in the design of the bicycle of a separate shock absorber under the saddle. The seatpost cushioning significantly reduces the vibration and shock felt by the rider, which is especially important when riding on uneven terrain.

Front brake

The type of brake fitted to the front wheel of a bicycle. The first word in the name of the brake indicates the place of application of the braking force, the second — the design feature of the entire braking system.

Rim (V-brake). Rim brakes are called brakes that work by pressing the brake pads against the wheel rim. They transfer the braking force from the handle to the pads by means of a cable pull. The common advantages of all rim brakes are the simplicity of design, light weight, low cost, good interchangeability of parts, as well as the minimum load on the hub and spokes. On the other hand, such brakes wear out the pads and rim, require periodic adjustment, and lose effectiveness when the rim is dirty, iced or warped.

Structurally, the differences between the subtypes of rim brakes lie in the way they are attached to the bicycle frame. In addition, each variety has found its own scope. So, V‒brake is common in teenage, touring and budget mountain bikes, the clamp subtype has found its way into road and city bikes, and the U-brake is practiced in BMX bikes.

— Disk mechanical. In disc systems, braking is carried out by pressing the pads not to the wheel rim, but to a special brake disc rigidly fixed on its axis. The braking force, as in mechanical rims (see above), is transmitted to the pads through a special cable. The main advantages of disc systems are significantly more power than rim systems, as we...ll as better modulation (for modulation, see "Rim hydraulic" above). In addition, they are less sensitive to weather conditions (because the disc is quite high and clogs less than the rim), they easily carry the “eights” on the rims, and the elements of the system wear out more slowly and are not so demanding to adjust. Among the disadvantages are greater weight, high cost, a tendency to overheat, an increase in the load on the spokes and wheel hub, as well as difficulty in repair — the last point is aggravated by the fact that different models of even one manufacturer are often not compatible in terms of spare parts. However, despite all this, disc brakes are quite widely used in extreme riding bikes, especially mid-range and high-end models.

— Disc hydraulic. A variant of disc brakes (see above), in which not a cable is used to transfer force from the handle to the pads, but a hydraulic system — a sealed structure filled with liquid and including a piston system. One of the main advantages of hydraulics is excellent modulation, it allows you to very accurately control the braking force. On the other hand, such a drive is more complicated and more expensive than a mechanical one, and if the circuit is damaged and the hydraulic fluid leaks, the brakes become useless. Therefore, hydraulic systems are used relatively rarely, mainly in professional bicycles.

— Drum. Brakes using a special drum, inside which brake pads are installed; in bicycles, the role of the drum can be played directly by the wheel hub or a special part of the hub. Anyway, the pads are pressed against the drum from the inside, and the entire brake structure is closed. This is one of the main advantages of this option: the mechanism is protected from pollution, external factors such as dirt or snow practically do not affect the effectiveness of the brakes. In addition, the advantages of drum mechanisms include the fact that they practically do not require maintenance, do not wear out the rim and do not lose efficiency when it is bent. On the other hand, such brakes turn out to be quite bulky, and in terms of efficiency they are inferior to rim and even more so disc counterparts. Therefore, this option is found mainly in urban bikes.

— Roller. A variety of drum brakes (see above), in which the pressing of the brake pads to the drum is ensured by a special mechanism — roller. In this case, the brake drum is often performed separately from the bushing. Such solutions were developed as an attempt to combine the advantages of disc and drum brakes in one mechanism, and partly succeeded: roller systems are noticeably more powerful than classic drum brakes, they are well protected from dust and dirt, require virtually no maintenance and work effectively even with a curved rim. On the other hand, the weight, dimensions and price of such brakes turned out to be very significant, they worsen the roll and get quite hot with constant use; and protection against pollution is not as high quality as in drum systems.

Rear brake

A type of rear brake fitted to a bicycle. Here are the main types of brakes found today:

Obodnoy. Rim brakes are those that work by pressing the brake pads against the rim of the wheel. They transfer the braking force from the handle to the pads via cable traction. The common advantages of all rim brakes include simplicity of design, light weight, low cost, good interchangeability of parts, as well as minimal load on the hub and spokes. On the other hand, such brakes wear out the pads and rim, require periodic adjustments, and lose effectiveness if the rim becomes dirty, icy, or bent.

Structurally, the differences between the subtypes of rim brakes lie in the way they are attached to the bicycle frame. Moreover, each variety has found its own area of application. Thus, V‒brake is common in teenage, recreational and budget mountain bikes, the pincer subtype is used in road and city bikes, and U-brake is practiced in BMX bicycles.

Disk mechanical. A kind of mechanical brakes (see above), in which the pads are pressed against a special brake disc (rotor) rigidly fixed to the wheel hub during braking. Such brakes are much more efficient than rim brakes, they are not as sensitive to dirt and retain their full performance even with rim curvature. Among the disadvantages of disk systems, one can note greater weight and cost, increased load on the bushing and spokes, as well as dif...ficulty in repair.

Disc hydraulic. Disc brakes (see above), in which the force on the pads is transmitted not by a cable, as in mechanical systems, but by means of a hydraulic circuit. They are the most advanced option in terms of performance: the use of a disc provides high braking efficiency, and the hydraulics give excellent modulation and allow you to accurately dose the force on the handle. At the same time, such systems are not cheap, and in addition to the general disadvantages of disc brakes, they add sensitivity to damage: a violation of the tightness of the circuit leads to fluid leakage and brake failure.

— Drum. Brakes in which the pads are pressed from the inside to a special drum; in this case, the role of this drum is usually played directly by the wheel hub. One of the advantages of such systems is that almost the entire mechanism is hidden inside the drum and protected from dust and dirt, making it virtually maintenance-free. In addition, drum brakes do not wear out the rim and can work even with a bent wheel. On the other hand, such systems are rather bulky and their effectiveness is lower than that of rim and disc brakes. In addition, the drum brake on the rear wheel can be used with either a single speed cassette or a planetary hub (see below) — these brakes are not compatible with classic multi-star cassette derailleurs.

Roller. A variation of the drum brakes described above, in which the pressing of the pads to the drum is ensured by the so-called. roller mechanism. The drum in this case, usually, is performed separately from the sleeve. Due to this, it was possible to achieve higher efficiency (comparable to disc brakes) while maintaining the main advantages of the drum circuit — unpretentious maintenance, good protection against dirt and independence from rim curvature. However, roller brakes are not cheap, and besides, they have a number of their own drawbacks — in particular, they worsen the roll and make it possible to spin the wheel back when the brake is pressed. Yes, and with classic speed switches, such systems are poorly compatible.

Pedal. In fact, it is a variation of the drum brake described above, controlled not by a handle, but by pedals: braking is carried out by pressing the pedals in the opposite direction. This method of control greatly simplifies the design, eliminating unnecessary handles and rods. At the same time, in some moments it is not very convenient and practical. So, the effectiveness of the brakes is directly dependent on the position of the pedals — for maximum efficiency, they must be horizontal at the time of braking, and in a vertical position, difficulties may arise. In addition, when the chain falls off, the cyclist, in fact, loses the brake. Thus, pedal mechanisms are used relatively rarely — mainly in city bikes that are not designed for particularly high-speed riding.

Speeds

The number of speeds (gears) provided for in the design of the bicycle. Each transfer has its own so-called gear ratio — in this case it can be described as the number of revolutions that the driven gear (rear, on the wheel) makes in one revolution of the leading gear (associated with the pedals).

Different gear ratios will be optimal for different conditions: for example, high gears provide good speed, but are poorly suited for overcoming obstacles, because. the effort on the pedals increases significantly and the frequency of their rotation decreases. It has been scientifically proven that a cyclist develops maximum power at a cadence of about 80-100 rpm. Thus, the presence in the bike of several speeds allows you to optimally adjust it to different driving modes and features of the tracks in order to provide optimal pedaling force and frequency of their rotation. For example, on smooth asphalt it is best to drive in a high gear, and when overcoming a rise or entering a dirt road, you can lower it in order to effectively overcome resistance.

The number of gears in classic systems is directly related to the number of stars of the system (on the bottom bracket with pedals) and the cassette (on the rear wheel); it can be obtained by multiplying two numbers — for example, 3 stars of the system and 6 on the cassette give 18 gears. However, there is also the so-called planetary hubs — there are stars one at a time, and gear shifting is carried out by a mec...hanism built into the rear hub.

Note that the optimal number of gears depends on the purpose of the bike (see above), and it is not always necessary to have several of them. So, in mountain models, depending on specialization, there can be from 8 to 30 gears, in road ones — within 20-30, and some inexpensive city bikes and most BMXs do not have a gear shift system at all.

Freewheel cogs

The number of stars (gears) of different sizes in a bicycle cassette. A cassette is a part of the rear hub that interacts directly with the chain, in other words, a gear or a set of gears mounted on the hub. In classical gear shifting systems, the number of gears directly depends on the number of stars in the cassette (for more details, see "Speeds"); a single chainring is used either in single speed bikes or in planetary hubs (see System Stars for more on these).

Max range

The maximum range of an e-bike (see "Application") is the maximum distance that it can be ridden using the electric motor on a single battery charge.

Usually, the characteristics indicate the range at the most economical way to use the battery: in the pedal assist mode (see "Operating modes") and at a relatively low speed. Accordingly, in fact, this parameter may turn out to be lower than the claimed one, especially if you drive in full electric mode. Nevertheless, in terms of power reserve, it is quite possible to evaluate and compare various models with each other.

Note that it makes sense to specifically look for a model with a power reserve of more than 50 km if long trips are planned without recharging along the way. For episodic rides, you can pay attention to cars with less battery life — they are simpler and cheaper.

Battery capacity

The capacity of the battery that the e-bike is equipped with (see "Application"), expressed in ampere-hours.

The battery capacity directly affects the operating time on a charge and, accordingly, the power reserve. However, in fact it hardly makes sense to evaluate these parameters by the number of ampere-hours. Firstly, the actual battery life will depend not only on the characteristics of the battery, but also on the power of the engine (which determines the power consumption of the machine). Secondly, the actual amount of energy stored in the battery depends not only on the capacity in ampere-hours, but also on the rated voltage; a more reliable unit in this sense is watt-hours, see Battery Capacity below for more details. So when choosing, it is better to focus not so much on the number of ampere-hours, but on the power reserve directly claimed by the manufacturer.
DYU C6 often compared
Maxxter City often compared