Dark mode
United Kingdom
Catalog   /   Photo   /   Digital Cameras

Comparison Sony ZV-1 vs Canon PowerShot G7X Mark III

Add to comparison
Sony ZV-1
Canon PowerShot G7X Mark III
Sony ZV-1Canon PowerShot G7X Mark III
Compare prices 5Compare prices 4
TOP sellers
Main
High-aperture optics. Rate of fire 24 fps. Advanced autofocus. Video shooting in 4K. An effective stabilizer. High speed video recording. Super Slow-Motion 1000 fps.
Luminous optics. High rate of fire. Video shooting in 4K. Audio input for microphone. Effective optical stabilization. Swivel screen with touch control. Compact dimensions.
Camera typedigital compactdigital compact
DxOMark rating63
Sensor
SensorCMOS (CMOS)CMOS (CMOS)
Sensor size1" (13.2x8.8 mm)1" (13.2x8.8 mm)
Total MP2121
Effective MP number2020
Maximum image size5472x3648 px5472x3648 px
Light sensitivity (ISO)125-12800125 - 12800
RAW format recording
Lens
Aperturef/1.8 - f/2.8f/1.8 - f/2.8
Focal length24 - 70 mm24 - 100 mm
Optical zoom2.94.2
Manual focus
Image stabilizationoptical and electronicoptical
Min. focus distance5 cm5 cm
Macro shooting, from5 cm5 cm
Photo shooting
HDR
2 control dials
White balance measuring
Exposure compensation± 3 EV, in 1/3 EV steps± 3 EV, in 1/3 EV steps
Auto bracketing
Exposure modes
auto
shutter priority
aperture priority
manual mode
auto
shutter priority
aperture priority
manual mode
Metering system
point
centre-weighted
sensor (estimated)
point
centre-weighted
sensor (estimated)
Video recording
Full HD (1080)1920x1080 px 120 fps1920x1080 px 60 fps
Ultra HD (4K)3840x2160 px 30 fps3840x2160 px 30 fps
File recording formatsMPEG-4, AVCHD, XAVC SMPEG-4, H.264
Manual video focus
Connection ports
HDMI v 2.0
microphone Jack
HDMI v 1.4
microphone Jack
Focus
Autofocus modes
one shot
AI focus
tracking
in face
by smile
animal in frame
one shot
 
tracking
in face
 
 
Focus points315 шт
Touch focus
Viewfinder and shutter
Viewfinderis absentis absent
Shutter speed30 - 1/32000 с30 - 1/25600 с
Continuous shooting24 fps30 fps
Shutter typeelectronic/mechanicalelectronic/mechanical
Screen
Screen size3 ''3 ''
Screen resolution921 thousand pixels1040 thousand pixels
Touch screen
Rotary display
Memory and communications
Memory cards typesSD, SDHC, SDXC, MemoryStickSD, SDHC, SDXC
Communications
Wi-Fi
Bluetooth
smartphone control
Wi-Fi
Bluetooth
smartphone control
Flash
Built-in flash
Guide number8
Application range7.5 m
External flash connect
Power source
Power source
battery
battery
Battery modelNP-BX1NB-13L
Shots per charge260 шт235 шт
General
Materialaluminium alloysteel
Dimensions (WxHxD)105х60х44 mm105x61x41 mm
Weight294 g304 g
Color
Added to E-Catalogmay 2020july 2019

DxOMark rating

The result shown by the camera in the DxOMark ranking.

DxOMark is one of the most popular and respected resources for expert camera testing. According to the test results, the camera receives a certain number of points; The more points, the higher the final score.

Light sensitivity (ISO)

The sensitivity range of a digital camera matrix. In digital photography, light sensitivity is expressed in the same ISO units as in film photography; however, unlike film, the light sensitivity of the sensor in a digital camera can be changed, which gives you more options for adjusting shooting parameters. High maximum light sensitivity is important if you have to use a lens with a low aperture (see Aperture), as well as when shooting dimly lit scenes and fast-moving objects; in the latter case, high ISO allows you to use low shutter speeds, which minimizes image blur. However, note that with an increase in the value of the applied ISO, the level of noise in the resulting images also increases.

Focal length

Focal length of the camera lens.

Focal length is such a distance between the camera matrix and the optical center of the lens, focused at infinity, at which a clear and sharp image is obtained on the matrix. For models with interchangeable lenses ( mirrorless cameras and MILC, see “Camera Type”), this parameter is indicated if the camera is supplied with a lens (“kit”); Let us recall that, if desired, optics with other characteristics can be installed on such a camera.

The longer the focal length, the smaller the viewing angle of the lens, the higher the degree of approximation and the larger the objects visible in the frame. Therefore, this parameter is one of the key for any lens and largely determines its application (specific examples are given below).

Most often in modern digital cameras, lenses with a variable focal length are used: such lenses are able to zoom in and out of the image (for more details, see "Optical Zoom"). For "DSLRs" and MILC, specialized optics with a constant focal length (fixed lenses) are produced. But in digital compacts, "fixes" are used extremely rarely, usually such a lens is a sign of a high-end model with specific characteristics.

It should be borne in mind that the actual focal length of the lens is usually given in the characteristics of the camera. And the viewing angles and the general purpose of the optics are determined not only by this parameter, but also...by the size of the matrix with which the optics are used. The dependence looks like this: at the same viewing angles, a lens for a larger matrix will have a longer focal length than a lens for a small sensor. Accordingly, only cameras with the same sensor size can be directly compared with each other in terms of lens focal length. However, to facilitate comparisons in the characteristics, the so-called. EGF - focal length in 35 mm equivalent: this is the focal length that a lens for a full frame matrix having the same viewing angles would have. You can compare by EGF lenses for any matrix size. There are formulas that allow you to independently calculate the equivalent of 35 mm, they can be found in special sources.

If we talk about a specific specialization, then the EGF up to 18 mm corresponds to ultra-wide-angle fisheye lenses. Wide-angle is considered "fixed" optics with EGF up to 28 mm, as well as vario lenses with a minimum EGF up to 35 mm. Values up to 60mm correspond to "general purpose" optics, 50 - 135mm are considered optimal for shooting portraits, and higher focal lengths are found in telephoto lenses. More detailed information about the specifics of various focal lengths can be found in special sources.

Optical zoom

The magnification factor provided by the camera by using the capabilities of the lens (namely, by changing its focal length). In models with interchangeable lenses (see “Camera type”), indicated for the complete lens, if available.

Note that in this case the magnification is indicated not relative to the image visible to the naked eye, but relative to the image produced by the lens at minimum magnification. For example, if the characteristics indicate an optical zoom of 3x, this means that at the maximum magnification, objects in the frame will be three times larger than at the minimum.

The degree of optical zoom is directly related to the range of focal lengths (see above). You can determine this degree by dividing the maximum focal length of the lens by the minimum, for example 360mm / 36mm=10x magnification.

To date, optical zoom provides the best "close" image quality and is considered to be superior to digital zoom (see below). This is due to the fact that with this format of work, the entire area of \u200b\u200bthe matrix is constantly involved, which allows you to fully use its capabilities. Therefore, even among low-cost models, devices without optical zoom are very rare.

Image stabilization

An image stabilization method provided by a camera. Note that optical and sensor-shift systems are sometimes combined under the term "true" stabilization, due to their effectiveness. See below for more details.

Stabilization itself (regardless of the operating principle) allows you to compensate for the "shake" effect when the camera is not positioned correctly - especially when shooting handheld. This is especially important when shooting with significant magnification or at long shutter speeds. However, in any case, this function reduces the risk of ruining the frame, so cameras with stabilization are extremely common. The operating principles can be as follows:

— Electronic. Stabilization is carried out by means of a kind of “reserve” — a section along the edges of the sensor, which is not initially involved in the formation of the final image. However, if the camera electronics detect vibrations, it compensates for them by selecting the necessary fragments of the image from the reserve. Electronic systems are extremely simple, compact, reliable and at the same time inexpensive. However, for their operation, it is necessary to allocate a fairly significant part of the sensor — and reducing the useful area of the sensor increases the noise level and degrades the image quality. And in some models, electronic stabilization is enabled only at lower resolutions and is not available at full...frame size. Therefore, in its pure form, this option is found mainly in relatively inexpensive cameras with non-replaceable optics.

— Optical. Stabilization is achieved when light passes through the lens — due to a system of moving lenses and gyroscopes. As a result, the image gets to the sensor already stabilized, and the entire area of the sensor can be used for it. Therefore, optical systems, despite their complexity and rather high cost, are considered more preferable for high-quality shooting than electronic ones. Separately, we note that in SLR and MILC cameras (see "Camera type") the presence of this function depends on the installed lens; therefore, for such models, optical stabilization is not indicated in our catalog in principle (even if the kit lens is equipped with a stabilizer).

— With sensor shift. Stabilization performed by shifting the sensor "following" the shifted image. Like the optical one described above, it is considered a fairly advanced option, although in general it is somewhat less effective. On the other hand, sensor shift systems have serious advantages — first of all, such stabilization will work regardless of the characteristics of the lens. For cameras with non-replaceable optics, this means that the lens can do without an optical stabilizer and make the optics simpler, cheaper and more reliable. In SLR and MILC cameras, sensor shift allows even "non-stabilized" lenses to be used with convenience, and when "stabilized" optics are installed, both systems work together, and their efficiency is very high. In addition, sensor shift is somewhat simpler and cheaper than traditional optical stabilizers.

— Optical and electronic. Stabilization that combines both of the above options: initially, it operates on an optical principle, and when the lens's capabilities are not enough, an electronic system is connected. This allows for an increase in overall efficiency in comparison with purely optical or purely electronic stabilizers. On the other hand, the disadvantages of both options in such systems are also combined: the optics are comparatively complex and expensive, and not the entire sensor is used. Therefore, such a combination is rare, mainly in individual advanced digital compacts.

— With sensor shift and electronic. Another type of combined stabilization systems. Like "optical + electronic", it improves the overall efficiency of stabilization, but at the same time combines the disadvantages of both methods (they are also similar: more complicated and more expensive camera plus a decrease in the useful area of the sensor). Therefore, this option is used extremely rarely - in single models of digital ultrazooms and advanced compacts.

2 control dials

The presence of two control dials in the design of the camera.

This design feature makes it easier to control the camera and change settings on the fly: additional operating parameters are transferred to the second disk, and turning it to the desired position is easier and faster than “digging” in the on-screen menu items. This feature is found mainly in semi-professional and professional cameras, which involve frequent use of manual shooting mode.

Auto bracketing

Bracketing is called shooting a series of frames, in which in each next frame the shooting parameters (exposure, white balance, focus, etc.) change by a certain amount. This allows, for example, to choose the most successful shot from several options, or to determine the effect of changing the settings in one direction or another. Auto bracketing allows you to take such shots automatically. At the same time, it should be taken into account that the set of parameters changed in the process may differ in different camera models. For example, some devices are able to change only the exposure, others — the exposure and/or white balance, etc.

Full HD (1080)

The maximum resolution and frame rate of video captured by the camera in Full HD (1080p).

The traditional Full HD video resolution in this case is 1920x1080; other options are more specific and practically do not occur in modern cameras. Regarding the frame rate, it is worth noting first of all that a normal (not slow-motion) video is shot at a speed of up to 60 fps, and in this case, the higher the frame rate, the smoother the video will be, the less jerks will be noticeable when moving in the frame. If the frame rate is 100 fps or higher, this usually means that the camera has a slow-motion video mode.

File recording formats

File formats in which the camera can record video. Given that the footage is designed to be viewed on an external screen, you should make sure that the playback device (DVD player, media centre, etc.) is able to work with the appropriate formats. At the same time, many camera models themselves can play the role of a player by connecting to a TV via an audio / video output or HDMI (see the corresponding paragraphs of the glossary). And if the video materials are to be viewed on a computer, you should not pay special attention to this parameter at all: problems with format incompatibility in such cases rarely occur, but are usually solved by installing the appropriate codec.
Sony ZV-1 often compared
Canon PowerShot G7X Mark III often compared