United Kingdom
Catalog   /   Photo   /   Digital Cameras

Comparison Canon EOS R10 body vs Canon EOS R7 body

Add to comparison
Canon EOS R10  body
Canon EOS R7  body
Canon EOS R10 bodyCanon EOS R7 body
Compare prices 5Compare prices 2
TOP sellers
Main
Dual Pixel autofocus with tracking of animals, human face or eyes.
5-axis stabilization with matrix shift. Dual Pixel autofocus with tracking of animals, human face or eyes.
Camera type"mirrorless" (MILC)"mirrorless" (MILC)
Sensor
Sensor
CMOS (CMOS) /digic X processor/
CMOS (CMOS) /digic X processor/
Sensor sizeAPS-C (22.3x14.9 mm)APS-C (22.3x14.9 mm)
Total MP2634
Effective MP number2433
Maximum image size6000x4000 px6960x4640 px
Light sensitivity (ISO)100-5120050- 51200
RAW format recording
Lens
Mount (bayonet)Canon RF-SCanon RF-S
Manual focus
Image stabilizationis absentwith matrix shift
Photo shooting
HDR
White balance measuring
Exposure compensation± 3 EV, in 1/2 or 1/3 EV steps± 3 EV, in 1/2 or 1/3 EV steps
Auto bracketing
Exposure modes
auto
shutter priority
aperture priority
manual mode
auto
shutter priority
aperture priority
manual mode
Metering system
point
centre-weighted
sensor (estimated)
point
centre-weighted
sensor (estimated)
Video recording
Full HD (1080)1920x1080 px 120 fps1920x1080 px 120 fps
Ultra HD (4K)3840x2160 px 60 fps3840x2160 px 60 fps
File recording formatsMP4, H.265, AAC, H.264MOV, H.265
Manual video focus
Connection ports
HDMI v 2.1
headphone Jack
microphone Jack
HDMI v 2.1
headphone Jack
microphone Jack
Focus
Autofocus modes
one shot
AI focus
tracking
in face
by smile
animal in frame
one shot
AI focus
tracking
in face
by smile
animal in frame
Focus points651 шт651 шт
Touch focus
Front / back adjustment
Contour enhancement
Viewfinder and shutter
Viewfinderelectronicelectronic
Viewfinder crop0.95 x1.15 x
Frame coverage100 %100 %
Shutter speed30 - 1/8000 с30 - 1/8000 с
Continuous shooting15 fps15 fps
Shutter typemechanicalmechanical
Screen
Screen size3 ''3 ''
Touch screen
Rotary display
Memory and communications
2 card slots
Memory cards types
SD, SDHC, SDXC /Eye-Fi, UHS-II/
SD, SDHC, SDXC, CFExpress /Eye-Fi, UHS-II, CFExpress Type-B/
Communications
Wi-Fi 5 (802.11ac)
Bluetooth
smartphone control
Wi-Fi
Bluetooth
smartphone control
Flash
Built-in flash
External flash connect
Power source
Power source
battery
battery
Battery modelLP-E17LP-E6NH
Shots per charge450 шт660 шт
General
Materialmagnesium alloymagnesium alloy
Protectiondustproof, waterproof
Dimensions (WxHxD)123x88x83 mm132х90х92 mm
Weight382 g612 g
Color
Added to E-Catalogseptember 2022september 2022

Total MP

The total number of individual light sensitive dots (pixels) provided in the camera's sensor. Denoted in megapixels - millions of pixels.

The total number of MPs, as a rule, is greater than the number of megapixels from which the frame is directly built (for more details, see "Effective number of MPs"). This is due to the presence of service areas on the matrix. In general, this parameter is more of a reference than practically significant: a larger total number of MPs with the same size and effective resolution means a slightly smaller size of each pixel, and, accordingly, an increased likelihood of noise (especially at high ISO values).

Effective MP number

The number of pixels (megapixels) of the matrix directly involved in the construction of the image, in fact — the number of points from which the captured image is built. Some manufacturers, in addition to this parameter, also indicate the total number of MPs, taking into account the service areas of the matrix. However, it is the effective number of MPs that is considered the main indicator — it is this that directly affects the maximum resolution of the resulting image (see “Maximum image size”).

A megapixel is 1 million pixels. Numerous megapixels ensures high resolution of the captured photos, but is not a guarantee of high-quality images — much also depends on the size of the sensor, its light sensitivity (see the relevant glossary items), as well as hardware and software image processing tools used in the camera. Note that for small matrices, high resolution can sometimes be more of an evil than a blessing — such sensors are very prone to the appearance of noise in the image.

Maximum image size

The maximum size of photos taken by the camera in normal (non-panoramic) mode. In fact, this paragraph indicates the highest resolution of photography — in pixels vertically and horizontally, for example, 3000x4000. This indicator directly depends on the resolution of the matrix: the number of dots in the image cannot exceed the effective number of megapixels (see above). For example, for the same 3000x4000, the matrix must have an effective resolution of at least 3000*4000 = 12 million dots, that is, 12 MP.

Theoretically, the larger the size of the photo, the more detailed the image, the more small details can be conveyed on it. At the same time, the overall image quality (including the visibility of fine details) depends not only on resolution, but also on a number of other technical and software factors; see "Effective MP number" for more details.

Light sensitivity (ISO)

The sensitivity range of a digital camera matrix. In digital photography, light sensitivity is expressed in the same ISO units as in film photography; however, unlike film, the light sensitivity of the sensor in a digital camera can be changed, which gives you more options for adjusting shooting parameters. High maximum light sensitivity is important if you have to use a lens with a low aperture (see Aperture), as well as when shooting dimly lit scenes and fast-moving objects; in the latter case, high ISO allows you to use low shutter speeds, which minimizes image blur. However, note that with an increase in the value of the applied ISO, the level of noise in the resulting images also increases.

Image stabilization

An image stabilization method provided by a camera. Note that optical and sensor-shift systems are sometimes combined under the term "true" stabilization, due to their effectiveness. See below for more details.

Stabilization itself (regardless of the operating principle) allows you to compensate for the "shake" effect when the camera is not positioned correctly - especially when shooting handheld. This is especially important when shooting with significant magnification or at long shutter speeds. However, in any case, this function reduces the risk of ruining the frame, so cameras with stabilization are extremely common. The operating principles can be as follows:

— Electronic. Stabilization is carried out by means of a kind of “reserve” — a section along the edges of the sensor, which is not initially involved in the formation of the final image. However, if the camera electronics detect vibrations, it compensates for them by selecting the necessary fragments of the image from the reserve. Electronic systems are extremely simple, compact, reliable and at the same time inexpensive. However, for their operation, it is necessary to allocate a fairly significant part of the sensor — and reducing the useful area of the sensor increases the noise level and degrades the image quality. And in some models, electronic stabilization is enabled only at lower resolutions and is not available at full...frame size. Therefore, in its pure form, this option is found mainly in relatively inexpensive cameras with non-replaceable optics.

— Optical. Stabilization is achieved when light passes through the lens — due to a system of moving lenses and gyroscopes. As a result, the image gets to the sensor already stabilized, and the entire area of the sensor can be used for it. Therefore, optical systems, despite their complexity and rather high cost, are considered more preferable for high-quality shooting than electronic ones. Separately, we note that in SLR and MILC cameras (see "Camera type") the presence of this function depends on the installed lens; therefore, for such models, optical stabilization is not indicated in our catalog in principle (even if the kit lens is equipped with a stabilizer).

— With sensor shift. Stabilization performed by shifting the sensor "following" the shifted image. Like the optical one described above, it is considered a fairly advanced option, although in general it is somewhat less effective. On the other hand, sensor shift systems have serious advantages — first of all, such stabilization will work regardless of the characteristics of the lens. For cameras with non-replaceable optics, this means that the lens can do without an optical stabilizer and make the optics simpler, cheaper and more reliable. In SLR and MILC cameras, sensor shift allows even "non-stabilized" lenses to be used with convenience, and when "stabilized" optics are installed, both systems work together, and their efficiency is very high. In addition, sensor shift is somewhat simpler and cheaper than traditional optical stabilizers.

— Optical and electronic. Stabilization that combines both of the above options: initially, it operates on an optical principle, and when the lens's capabilities are not enough, an electronic system is connected. This allows for an increase in overall efficiency in comparison with purely optical or purely electronic stabilizers. On the other hand, the disadvantages of both options in such systems are also combined: the optics are comparatively complex and expensive, and not the entire sensor is used. Therefore, such a combination is rare, mainly in individual advanced digital compacts.

— With sensor shift and electronic. Another type of combined stabilization systems. Like "optical + electronic", it improves the overall efficiency of stabilization, but at the same time combines the disadvantages of both methods (they are also similar: more complicated and more expensive camera plus a decrease in the useful area of the sensor). Therefore, this option is used extremely rarely - in single models of digital ultrazooms and advanced compacts.

File recording formats

File formats in which the camera can record video. Given that the footage is designed to be viewed on an external screen, you should make sure that the playback device (DVD player, media centre, etc.) is able to work with the appropriate formats. At the same time, many camera models themselves can play the role of a player by connecting to a TV via an audio / video output or HDMI (see the corresponding paragraphs of the glossary). And if the video materials are to be viewed on a computer, you should not pay special attention to this parameter at all: problems with format incompatibility in such cases rarely occur, but are usually solved by installing the appropriate codec.

Viewfinder crop

This setting can be simplistically described as the amount of magnification provided by the viewfinder relative to how the image appears to the naked eye. The features of modern viewfinders are such that most of them have crop values less than 1 — that is, it somewhat reduces the visible “picture”.

In general, the larger this parameter, the larger the objects look in the viewfinder and the easier it is to focus through it.

2 card slots

The presence of two slots for memory cards in the design of the camera. At the same time, slots can differ according to the type of cards used: for example, the main slot for a fast and reliable XQD card can be supplemented by a slot for a slower, but inexpensive SD card.

Anyway, in digital cameras there are three main formats for working with two cards:

— Backup: information from the main card is duplicated on the second one. Thus, if one of the media fails, the data will not be lost.
— Recording on overflow: recording on the additional card starts when the main one runs out of space. This mode allows you to increase the total amount of available memory.
— RAW/JPEG separation: when shooting in two formats, RAW sources are saved on the main card (usually faster), and finished JPEGs are saved on the secondary one.


The specific functionality in different camera models may be different, but it is not uncommon to find support for all the described methods of operation at once. On the other hand, an additional slot affects the dimensions and price of the device, despite the fact that it is not critical for amateur filming. Therefore, this feature is found mainly in professional-level devices.

Memory cards types

The type of memory cards supported by the camera. To date, there are many types of memory cards, differing both in size and in the technology used; not all of them are mutually compatible. Many formats are a common standard and are used by many manufacturers, but there are also proprietary developments of individual manufacturers that are used only in their cameras.

Here are some of the most popular memory card formats found in digital cameras:

— SD and further modifications — SDHC, SDXC. An extremely popular format, used not only in most cameras, but also in various other types of equipment — laptops, media centers, etc. Earlier versions of SD cards are compatible with later card readers, but not vice versa.

— microSD (microSDHC microSDXC). A smaller version of the SD cards described above, used mainly in the smallest cameras.

— Memory Stick Pro (and its various modifications). The Sony proprietary standard is found mainly in the cameras of this company. Such cards are quite fast and roomy, but expensive.

— CompactFlash. Quite old, but still used in photographic technology, the standard of memory cards. These cards are quite large, but provide high speed and have a capacity of up to 128 GB. They are found mainly in "reflex cameras" (see "Type of camera").

— XQD. The standard, which is a kind of ideological successor to CompactFlash: it provides a large size of cards, which, however, is compensated by hig...h capacity and speed. It is found mainly in SLR cameras of the highest price category.
Canon EOS R10 often compared
Canon EOS R7 often compared