United Kingdom
Catalog   /   Sound & Hi-Fi   /   Headphones

Comparison JBL Live Flex vs Marshall Minor III

Add to comparison
JBL Live Flex
Marshall Minor III
JBL Live FlexMarshall Minor III
Compare prices 13Compare prices 6
TOP sellers
Main
Adaptive active noise cancellation. Long battery life.
Connection and design
Design
inserts
inserts
Connection typewirelesswireless
Connection
Bluetooth v 5.3
Bluetooth v 5.2
Range10 m10 m
Specs
Impedance32 Ohm32 Ohm
Frequency range20 – 20000 Hz20 – 20000 Hz
Sensitivity101 dB93 dB
Speaker size12 mm12 mm
Emitter typedynamicdynamic
Microphone specs
Microphone
built into the case /3 pcs in each earphone/
built into the case
Sensitivity-38 dB
Features
Noise cancellationadaptive ANC
Transparent mode
Multipoint
Codec support
 
aptX
Voice assistantAmazon Alexa / Apple Siri / Google Assistant
Power supply
Power sourcebatterybattery
Headphone battery capacity54 mAh
Case battery capacity690 mAh
Charging time2 h
Operating time (music)
6 h /5 hours with Adaptive ANC/
5 h
Operating time (talk)4 h
Operating time (no noise canceling)8 h
Operating time (with case)40 h25 h
Fast charge10 minutes for 2 hours of work15 minutes for 1.5 hours of work
Wireless charger
Charging portUSB CUSB C
General
Touch control
WaterproofIP54IPX4
Weight5 g4 g
In box
charging case
charging case
Color
Added to E-Catalogapril 2023november 2021

Connection

The specific connection interface provided in the headphones. At the same time, some models may provide several options at once - these are either combined devices (see “Connection type”) or wired headphones equipped with additional adapters.

— micro-Jack (2.5 mm). A wired connector similar to the popular mini-Jack 3.5 mm (see below), but smaller in dimensions. Equipment with such a connection is rare - they are mostly miniature devices, where there is simply no room for a 3.5 mm connector. Accordingly, this interface has not become widespread among headphones: it is almost never found in its pure form; models with such a plug are usually supplemented with an adapter or cable for a mini-Jack.

mini-Jack(3.5 mm). Perhaps the most popular modern type of audio connector; If a device claims to have a headphone output, most likely it is a 3.5 mm jack. Accordingly, most headphones with a wired connection use this type of connector. It is worth noting that headphones with a microphone designed for such a connection are equipped with a special plug for a combined headphone + microphone audio connector (similar connectors are popular in portable gadgets and laptops). But with a jack intended only for “ears” without a microphone, such a plug may not work correctly. An alternative could be headphones equipped with two separate mini-jack plugs; See below for more details on this option.

mini-Jack (2 x 3.5 mm).... Models with two 3.5 mm mini-jack plugs. This option is guaranteed to mean that we are not talking about classic headphones, but about a headset with a microphone: one plug is used for headphones, the second for a microphone. Such models are convenient when used with equipment that has separate 3.5 mm jacks for “ears” and a microphone - for example, for a PC.

Pentaconn (4.4 mm). It is a 5-pin balanced output. Pentaconn uses a larger plug compared to the mini-Jack; its size is 4.4 mm, which is stronger and more reliable than the 3.5 mm connection. Pentaconn's balanced connection makes it possible to work with high-power audio signals. Thanks to this connection, it is possible to transmit a signal over a fairly long distance. Accordingly, such a connector is relevant for headphones of the highest category.

Jack (6.35 mm). The largest type of Jack-type audio connector found in modern technology. Outputs of this type are found mainly in stationary audio equipment - for portable devices they are too bulky, where it is easier to use a 3.5 mm mini-jack. At the same time, the 6.35 mm connector is considered a more suitable interface for professional and audiophile-grade equipment: it provides a more reliable connection, greater contact density and, accordingly, less likelihood of interference. Therefore, although relatively few headphones (mostly premium solutions) are equipped with their own Jack type connector, many models with a 3.5 mm mini-Jack plug are equipped with an adapter to 6.35 mm.

- XLR. A characteristic round connector with a locking lock and 3 contacts (there are other options for quantity). Typically, it is used to transmit an analog signal over a balanced connection. This connection provides high immunity to interference, typical for professional use; at the same time, the connector itself has quite large dimensions. In view of all this, the presence of XLR is relevant mainly for headphones designed for use with advanced stationary equipment.

Bluetooth. The most popular wireless connection option in modern headphones. This is due to the fact that built-in Bluetooth modules are available in almost any modern smartphone, tablet or laptop, and appropriate adapters can be produced for devices without this module (for example, a PC). True, the sound quality with a traditional Bluetooth connection is relatively low, but to correct the situation, special technologies like aptX and aptxHD are increasingly being used (see “Codec support”).
It is also worth noting that Bluetooth modules can correspond to different versions (the latest for 2022 are Bluetooth 5.0, Bluetooth 5.1, Bluetooth 5.2, Bluetooth 5.3, Bluetooth 5.4). This point does not affect the sound quality, but it determines a number of additional nuances - communication range and reliability , the ability to work through walls and other obstacles, resistance to interference, etc. In modern “ears” you can find the following versions of Bluetooth:
  • Bluetooth v 4.0. An update in which the capabilities of version 3.0 (classic + high-speed Bluetooth) were supplemented with a third format - Bluetooth LE (low energy consumption). This communication standard is intended mainly for transmitting small amounts of information - in particular, service data packets to maintain a connection. At the same time, the creators managed to combine economical energy consumption and a long communication range - it can reach 100 m. This has a positive effect on the stability of the connection.
  • Bluetooth v4.1. Development and improvement of Bluetooth 4.0. If we talk specifically about headphones, the key innovation for them in this version is improved noise immunity when working near 4G (LTE) mobile communication devices (in earlier standards, Bluetooth and LTE signals could overlap, which led to failures). So, for use with a 4G smartphone, headphones with Bluetooth support of at least v 4.1 are definitely recommended.
  • Bluetooth v4.2. Further, after 4.1, development of the Bluetooth standard, which mainly introduced a number of general improvements in reliability and noise immunity.
  • Bluetooth v 5.0. Major Bluetooth update released in 2016. One of the most notable innovations was the introduction of two additional operating modes of Bluetooth LE: an increased speed mode (by reducing the range) and an extended range mode (by reducing the speed). In the case of headphones, the main significance of these innovations is to improve the overall reliability of the connection, increase its range and reduce the number of dropouts.
  • Bluetooth v5.1. Update version v 5.0, in which, in addition to general improvements in the quality and reliability of communication, an interesting feature has appeared, such as determining the direction from which the Bluetooth signal is coming. Thanks to this, a smartphone or other gadget that supports this standard is able to determine the location of connected devices with an accuracy of a centimeter; This can be useful, for example, for finding headphones that have disappeared from sight but are still working.
  • Bluetooth v5.2. The next update, after 5.1, is Bluetooth 5th generation. The main innovations in this version are a number of security improvements, additional optimization of power consumption in LE mode and a new audio signal format for synchronizing parallel playback on multiple devices.
  • Bluetooth v5.3 was introduced at the dawn of 2022. Among the innovations in it, they accelerated the process of negotiating a communication channel between the controller and the device, implemented the function of quickly switching between the operating state in a low duty cycle and a high-speed mode, and improved the throughput and stability of the connection by reducing susceptibility to interference. When unexpected interference occurs in Low Energy mode, the procedure for selecting a communication channel to switch from now on has been accelerated.
  • Bluetooth v5.4. introduced at the beginning of 2023, increased the range and speed of data exchange. Also in Bluetooth v 5.4, the energy-saving BLE mode has been improved. This version of the protocol uses new security features to protect data from unauthorized access, has increased connection reliability by selecting the best channel for communication, and prevents connection losses due to interference.
Radio channel. Wireless connection via radio channel that does not use Bluetooth technology (see above). Such headphones are usually equipped with an adapter that connects to the signal source wired - for example, via USB or mini-Jack 3.5. This connection method is more universal than Bluetooth; it can be used even with devices that do not have wireless modules. In addition, the radio channel provides a long range (often up to several tens of meters), and the sound quality is quite high even without the use of special technologies. The disadvantage of this option is the presence of an adapter, which is not always appropriate: for example, it is more convenient to use Bluetooth headphones with a tablet or smartphone.

- IR channel. Another method of wireless connection, the peculiarity of which is that it does not use radio waves, but infrared radiation. Theoretically, the advantage of such a connection is its resistance to electromagnetic interference, the disadvantage is that it only works in line of sight. In practice, the situation is such that in most cases it is easier to use Bluetooth or a radio channel for a wireless connection. So this option is found exclusively in specialized devices for equipment equipped with their own IR outputs - in particular, among headphones for car monitors.

— USB A. Wired connection to a standard (full-dimensions) USB connector. This option is found exclusively among headphones designed for computers/laptops or gaming consoles. One of its advantages is that sound via USB is transmitted digitally and is processed not by the computer's audio card, but by the built-in headphone converter; such a converter often provides better sound quality than the mentioned audio card. In addition, multi-channel audio can be transmitted via a USB connection - this point will be especially appreciated by gamers. Another advantage is that when using USB headphones, specialized audio outputs remain free, and you can connect other equipment to them - for example, computer speakers or a vibration pad.

- USB C. A relatively new type of USB connector, used in both desktop computers and portable devices - as a successor to microUSB. It is not very different in dimensions, but has a more advanced design - in particular, it is made double-sided, which makes connection easier. Most often complemented by other connection options (they can be either wired or wireless).

- Lightning. A universal connector used in Apple portable devices - iPhone smartphones and iPad tablets - since 2012. Not used by other manufacturers. Accordingly, models with such an interface are designed specifically for Apple technology (primarily iPhone and iPod touch players). This type of connection is especially relevant given the fact that in the latest iPhones the manufacturer has completely abandoned a separate audio output, and the only option for connecting headphones is the Lightning port.

— Branded connector. A connection connector that does not belong to generally accepted standards and is used to a limited extent in equipment from one or several manufacturers. Such connectors are found mainly among headphones for mobile phones. However, due to general standardization, this option has practically disappeared from the scene. Theoretically, the branded connector is also the Lightning described above, but it is separated into a separate category due to the popularity of Apple technology.

Sensitivity

Rated headphone sensitivity. Technically, this is the volume at which they sound when a certain standard signal from the amplifier is connected to them. Thus, sensitivity is one of the parameters that determine the overall volume of the headphones: the higher it is, the louder the sound will be with the same input signal level and other things being equal. However, we must not forget that the volume level also depends on the resistance (impedance, see above); moreover, it is worth choosing “ears” for a specific device first by impedance, and only then by sensitivity. In this case, one parameter can be compensated for by another: for example, a model with high resistance and high sensitivity can work even on a relatively weak amplifier.

As for specific figures, headphones with indicators of 100 dB or less are designed mainly for use in a quiet environment (in some similar models, the sensitivity does not exceed 90 dB). For use on the street, in transport and other similar conditions, it is desirable to have more sensitive headphones — about 101 – 105 dB, or even 110 dB. And in some models, this figure can reach 116 – 120 dB. and even more.

It is also worth noting that this parameter is relevant only for a wired connection according to the analogue standard — for example, via a 3.5 mm mini-...jack. When using digital interfaces like USB and wireless channels like Bluetooth, the sound is processed in the built-in headphone converter, and if you plan to mainly use this kind of application, you can not pay much attention to sensitivity.

Sensitivity

The sensitivity of the headphone's own microphone.

The more sensitive the microphone, the higher the signal level from it, at the same sound volume, and the better this model is suitable for picking up quiet sounds. Conversely, low sensitivity filters out background noise. At the same time, we note that these nuances are important mainly in professional work with sound. And for simple tasks like voice communication over the phone or via the Internet, sensitivity does not really matter: in headphones of this specialization, it is selected in such a way as to ensure that the microphone is guaranteed to work.

Noise cancellation

A system that reduces the influence of ambient noise on the audibility of sound through headphones. "Noise reduction" with the help of a separate microphone (or several micro) "listens" to external sounds and sends the same sounds to the headphones, but in antiphase. Due to this, the noise heard by the ears is attenuated almost to zero and the user can enjoy the sound of the headphones without interference even in a rather “loud” environment. For filtering in headphones, Active Noise Cancellation (ANC) and Environment Noise Cancellation (ENC) systems are used. The first suppresses all the noise around the listener, the second - reduces the noise level of the environment. Active noise cancellation affects the purity of the sound, but the noise from the outside spoils the picture when listening to audio tracks even more.

Also in the headphones there is an adaptive active noise reduction system Adaptive ANC, aimed at automatically adjusting the sound of the headphones depending on the level of ambient noise. In a noisy environment (for example, when traveling on the subway), the Adaptive ANC system enhances the work of “noise reduction”, in the absence of loud sounds from outside, it weakens the noise reduction.

Transparent mode

A feature that allows the user to hear the sounds of the surrounding world without removing the headphones.

This possibility is relevant mainly for models with a high degree of sound insulation; so the transparent mode can be found mainly among in-ear models, as well as overhead "ears" of the Over Ear format in a closed acoustic design. A special microphone is responsible for the operation of the function, which “listens” to the surrounding sounds and broadcasts them to the headphones. In Talk Through mode, you can, for example, listen to the interlocutor or control the environment on a busy street. And some headphones with this feature also have more advanced functions, including automatic adjustment to the situation: such models turn on on their own to transmit speech, “hearing” the loud voice of a person nearby. Individual headphones react to loud street noises in the transparent Ambient Aware mode — it means broadcasting noises through the speaker that can be potential danger signals (screams, car signals, etc.).

Note that most models with Talk through also have an active noise reduction function (see above), and the “transparent mode” in them is one of the noise reduction modes. However, exceptions to this rule are possible — technically transparent mode does not have to be combined with noise reduction.

Multipoint

A technology used in Bluetooth models (see "Connection") that allows the headphones to connect to multiple devices at the same time. Thanks to this, you can, for example, listen to music from a laptop, and when a call comes in on a mobile phone, switch the headphones to a conversation. This technology has its own characteristics for different manufacturers, and therefore, if the multipoint function is critical for you, you should separately clarify the details of its operation in the selected model.

Codec support

Codecs and additional audio processing technologies supported by Bluetooth headphones (see “Connection”). Initially, sound transmission via Bluetooth involves fairly strong signal compression; This is not critical when transmitting speech, but can greatly spoil the impression when listening to music. To eliminate this shortcoming, various technologies are used, in particular aptX, aptX HD, aptX Low Latency, aptX Adaptive, AAC, LDAC and LHDC. Of course, to use any of the technologies, it must be supported not only by the “ears”, but also by the Bluetooth device with which they are used. Here are the main features of each option:

- aptX. A Bluetooth codec designed to significantly improve the quality of audio transmitted over Bluetooth. According to the creators, it allows you to achieve quality comparable to Audio CD (16-bits/44.1kHz). The benefits of aptX are most noticeable when listening to high-quality content (such as lossless formats), but even on regular MP3 it can provide a noticeable sound improvement.

- aptX HD. Development and improvement of the original aptX, allowing for sound purity comparable to Hi-Res audio (24-bits/48kHz). As in the original, the benefits of aptX HD are noticeable mainly on high-quality...audio, although this codec will not be out of place for MP3.

- aptX Low Latency. A specific version of aptX described above, designed not so much to improve sound quality, but to reduce delays in signal transmission. Such delays inevitably occur when working via Bluetooth; They are not critical for listening to music, but when watching videos or playing games, there may be a noticeable desynchronization between the image and sound. The aptX LL codec eliminates this phenomenon, reducing latency to 32 ms - such a difference is imperceptible to human perception (although for serious tasks like studio audio work it is still too high). aptX LL support is found mainly in gaming headphones.

- aptX Adaptive. Further development of aptX; actually combines the capabilities of aptX HD and aptX Low Latency, but is not limited to this. One of the main features of this standard is the so-called adaptive bitrate: the codec automatically adjusts the actual data transfer rate based on the characteristics of the broadcast content (music, game audio, voice communications, etc.) and the congestion of the frequencies used. This, in particular, helps reduce energy consumption and increase communication reliability; and special algorithms allow you to broadcast sound quality comparable to aptX HD (24 bits/48 kHz), using several times less amount of transmitted data. And the minimum data transfer latency (at the aptX LL level) makes this codec excellent for games and movies.

- aptX Lossless. The next stage in the development of aptX technology, which involves transmitting CD-quality sound over a wireless Bluetooth network without loss or compression. Audio broadcasting with sampling parameters of 16 bits / 44.1 kHz is carried out with a bitrate of about 1.4 Mbit/s - this is about three times faster than it was in the aptX Adaptive edition (see above). Support for aptX Lossless began to be introduced at the end of 2021 as part of the Snapdragon Sound initiative from Qualcomm.

- A.A.C. A Bluetooth codec used primarily in portable Apple gadgets. In terms of capabilities, it is noticeably inferior to more advanced standards like aptX or LDAC: the sound quality when using AAC is comparable to an average MP3 file. However, for listening to the same MP3s, this is quite enough; the difference becomes noticeable only on more advanced formats. AAC hardware requirements are low, and its support in headphones is inexpensive.

— LDAC. Sony's proprietary Bluetooth codec. It surpasses even aptX HD in terms of bandwidth and potential sound quality, providing performance at the Hi-Res level of 24-bits/96kHz audio; there is even an opinion that this is the maximum quality that it makes sense to provide in wireless headphones - further improvement will simply be imperceptible to the human ear. On the other hand, supporting this standard is not cheap, and there are still quite a few gadgets with such support - these are, in particular, Sony smartphones, as well as mid- and high-end devices running Android 8.0 Oreo and later versions.

- LHDC. LHDC (Low latency High-Definition audio Codec) is a high-definition, low-latency codec developed by the Hi-Res Wireless Audio Alliance and Savitech. In the vast majority of cases, its support is implemented at the hardware level in Huawei and Xiaomi smartphones. The codec is also known as HWA (Hi-Res Wireless Audio). When using LHDC, signal transmission from the phone to the headphones is carried out with a bits rate of up to 900 kbps, a bits depth of up to 24 bits and a sampling frequency of up to 96 kHz. This ensures a stable and reliable communication with reduced latency. The codec is optimally suited for high-end wireless headphones and advanced digital audio formats.

Voice assistant

Headphones with voice assistant support the user interaction with the device to a new level. The call of the assistant. is carried out by pressing one of the control buttons on the headphones or by a specific voice command (for example, «Ok, Google» for the Google Assistant virtual apprentice). The assistant pauses playback, instantly changes the volume of the music, can notify the user of new alerts, helps to answer messages without the help of hands, and commands are given to the paired smartphone via voice control from the headphones.

Headphone battery capacity

The capacity of the battery installed in the headphones of the corresponding design (see "Power").

Theoretically, a higher capacity allows to achieve greater battery life, but in fact, the operating time also depends on the power consumption of the headphones — and it can be very different, depending on the characteristics and design features. So this parameter is secondary, and when choosing it is worth paying attention not so much to the battery capacity, but to the directly claimed operating time (see below).
JBL Live Flex often compared
Marshall Minor III often compared