United Kingdom
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Lenovo V15 G2 ALC [82KD00FYPB] vs Asus TUF Gaming F15 FX506HC [FX506HC-WS53]

Add to comparison
Lenovo V15 G2 ALC (82KD00FYPB)
Asus TUF Gaming F15 FX506HC (FX506HC-WS53)
Lenovo V15 G2 ALC [82KD00FYPB]Asus TUF Gaming F15 FX506HC [FX506HC-WS53]
from £378.99 
Outdated Product
from £822.99 
Outdated Product
TOP sellers
Typelaptoplaptop
Screen
Screen size15.6 "15.6 "
Screen typeTN+filmIPS
Surface treatmentanti-glareanti-glare
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Refresh rate60 Hz144 Hz
Brightness250 nit250 nit
Contrast500 :11000 :1
Colour gamut (sRGB)63 %
Colour gamut (Adobe RGB)47 %
Colour gamut (NTSC)45 %45 %
TÜV Rheinland certificate
CPU
SeriesRyzen 3Core i5
Model5300U11260H
Code nameLucienne (Zen 2)Tiger Lake (11th Gen)
Processor cores46
Total threads8 threads12 threads
CPU speed2.6 GHz2.6 GHz
TurboBoost / TurboCore frequency3.8 GHz4.4 GHz
CPU TDP25 W45 W
Passmark CPU Mark10104 score(s)15074 score(s)
RAM
RAM8 GB8 GB
Max. RAM16 GB32 GB
RAM typeDDR4DDR4
RAM speed3200 MHz3200 MHz
Slotsbuilt-in + 1 slot2
Graphics card
Graphics card typeintegrateddedicated
Graphics card seriesAMD RadeonNVIDIA GeForce
Graphics card modelVega 6RTX 3050
Video memory4 GB
Memory typeGDDR6
GPU TDP75 W
3DMark0614700 score(s)39512 score(s)
3DMark Vantage P43216 score(s)
Storage
Drive typeSSD M.2SSD M.2
Drive capacity256 GB512 GB
M.2 drive interfacePCI-E 3.0 4xPCI-E 3.0
NVMe
M.2 connector interfacePCI-E 3.0 4x
M.2 drive size22x42 mm22x80 mm
Additional 2.5" slot
Additional M.2 connector1
Addittional M.2 connectors interfacePCI-E 3.0 4x
Additional M.2 drive size22x80 mm
Connections
Connection ports
HDMI
v 1.4b
HDMI
v 2.0b
Card reader
USB 2.01 pc
USB 3.2 gen11 pc3
USB C 3.2 gen11 pc
USB41
Thunderbolt interfacev4 1 pcs
Alternate Mode
Monitors connection12
LAN (RJ-45)1 Gbps1 Gbps
Wi-FiWi-Fi 5 (802.11ac)Wi-Fi 6 (802.11ax)
Bluetoothv 5.0v 5.2
Multimedia
Webcam1280x720 (HD)1280x720 (HD)
Camera shutter
Speakers22
Audio decodersDTS X Ultra
Security
kensington / Noble lock
TPM
kensington / Noble lock
 
Keyboard
Backlightis absentRGB
Lighthing syncAsus Aura Sync
Key designisland typeisland type
Num block
Additional keys4
Waterproof
Input devicetouchpadtouchpad
Battery
Battery capacity4240 mAh
Battery capacity38 W*h48 W*h
Battery voltage11.4 V
Operating time7.5 h
Powered by USB-C (Power Delivery)
Fast charge
Charging time80% in 60 min50% in 30 min
Power supply Included65 W180 W
General
Preinstalled OSWindows 11 HomeWindows 10 Home
MIL-STD-810 Military Standard
Materialmatte plasticaluminium / plastic
Dimensions (WxDxT)359x236x20 mm359x256x25 mm
Weight1.7 kg2.3 kg
Color
Added to E-Catalogmarch 2023july 2022

Screen type

The technology by which the matrix of the laptop is made.

Matrices of the TN+film, IPS and *VA types are most widely used nowadays; less common are screens like OLED, AMOLED, QLED, miniLED, as well as more specific solutions like LTPS or IGZO. Here is a more detailed description of all these options:

— TN-film. The oldest, simplest and most inexpensive technology currently in use. The key advantages of this type of display are low cost and excellent response time. On the other hand, such matrices are not of high image quality: brightness, colour fidelity and viewing angles of TN-film screens are at an average level. These indicators are quite enough for working with documents, web surfing, most games, etc.; however, for more serious tasks that require a high-quality and reliable picture (for example, design or photo / video colour correction), such screens are practically unsuitable. Thus, TN-film matrices are relatively rare nowadays, mainly among low-cost laptops; more advanced devices are equipped with better screens, most often IPS.

— IPS (In-Plane Switching). The most popular type of matrix for laptops in the middle and top price range; however, it is increasingly common in low-cost models, and for trans...formers and 2-in-1 devices (see "Type") it is almost a standard option. Screens of this type are noticeably superior to TN-film in terms of the quality of the “picture”: they provide a bright, reliable and rich image that hardly changes when the viewing angle changes. In addition, this technology allows to achieve extensive colour gamuts in various special standards (see below) and is suitable for creating displays with advanced features such as HDR support or Pantone / CalMAN certification (also see below). Initially, IPS matrices were expensive and had a slow response time; however, nowadays, various modifications of this technology are used, in which these shortcomings are fully or partially compensated. At the same time, different modifications may differ in practical characteristics: for example, some are created based on the maximum reliability of the picture, others differ in affordable cost, etc. So it's ok to clarify the actual characteristics of the IPS screen before buying — especially if you plan to use a laptop for specific applications where image quality is critical.

— *V.A. Various modifications of matrices of the "Vertical Alignment" type: MVA, PVA, Super PVA, ASVA, etc. The differences between these technologies are mainly in the name and the manufacturer. Initially, matrices of this type were developed as a compromise between IPS (high-quality, but expensive and slow) and TN-film (fast, inexpensive, but modest in image quality). As a result, *VA screens turned out to be more affordable than IPS and more advanced than TN-film — they have good colour reproduction, deep blacks and wide viewing angles. At the same time, it is worth noting that the colour balance of the picture on such a display changes somewhat when the viewing angle changes. This makes it difficult to use *VA matrices in professional colour work. In general, this option is designed mainly for those who do not need perfect colour accuracy and at the same time want to see a bright and colorful image.

— OLED. Matrices based on the so-called organic light-emitting diodes. The key feature of such displays is that in them each pixel is a source of light in itself (unlike classic LCD screens, in which the backlight is made separately). This design principle, combined with a number of other solutions, provides excellent brightness, contrast and colour reproduction, rich blacks, the widest possible viewing angles and a small thickness of the screens themselves. On the other hand, laptop OLED matrices for the most part turn out to be quite expensive and “gluttonous” in terms of energy consumption, and they wear out unevenly: the more often and brighter a pixel glows, the faster it loses its working properties (however, this phenomenon becomes noticeable only after several years of intensive use). In addition, for a number of reasons, such screens are considered poorly suited for gaming applications. In light of all this, sensors of this type are rare these days — mostly in individual high-end laptops designed for professional colour work and with appropriate features such as HDR support, wide colour gamut and/or Pantone / CalMAN certification (see below).

— AMOLED. A kind of matrices on organic light-emitting diodes, created by Samsung (however, it is also used by other manufacturers). In terms of its main features, it is similar to other types of OLED matrices (see above): on the one hand, it allows you to achieve excellent image quality, on the other hand, it is expensive and wears out unevenly. At the same time, AMOLED screens have even more advanced colour performance combined with better power optimization. And the low prevalence of this technology is mainly due to the fact that it was originally created for smartphones and only recently began to be used in laptops (since 2020).

— MiniLED. Screen backlight system on a substrate of miniature LEDs with a size of about 100-200 microns (µm). On the same display plane, it was possible to increase the number of LEDs several times, and their array is placed directly behind the matrix itself. The main advantage of miniLED technology can be called a large number of local dimming zones, which in total gives improved brightness, contrast and more saturated colors with deep blacks. MiniLED screens unlock the potential of High Dynamic Range (HDR) technology, suitable for graphic designers and digital content creators.

— QLED. Matrices on "quantum dots" with a redesigned LED backlight system. In particular, it provides the replacement of multilayer colour filters with a special thin-film coating of nanoparticles. Instead of traditional white LEDs, QLED panels use blue ones. As a result, a set of design innovations makes it possible to achieve a higher brightness threshold, colour saturation, improve the quality of colour reproduction in general, while reducing the thickness of the screen and reducing power consumption. The reverse side of the QLED-matrices coin is an expensive cost.

— PLS. A type of matrix developed as an alternative to the IPS described above and, according to some sources, is one of its modifications. Such matrices are also characterized by high colour rendering quality and good brightness; in addition, the advantages of PLS include good suitability for high-resolution screens (due to high pixel density), as well as lower cost than most IPS modifications, and low power consumption. At the same time, the response speed of such screens is not very high.

— LTPS. An advanced type of TFT-matrix, created on the basis of the so-called. low temperature polycrystalline silicon. Such matrices have high colour quality, and are also well suited for screens with high pixel density — in other words, they can be used to create small displays with very high resolution. Another advantage is that part of the control electronics can be built directly into the matrix, reducing the overall thickness of the screen. On the other hand, LTPS matrices are difficult to manufacture and expensive, and therefore are found mainly in premium laptops.

— IGZO. An LCD technology that uses a semiconductor material based on indium, gallium, and zinc oxides (as opposed to more traditional amorphous silicon). This technology provides fast response time, low power consumption and very high colour quality; it also achieves high pixel densities, making it well-suited for ultra-high resolution screens. However, while such displays in laptops are extremely rare. This is explained both by the high cost and by the fact that rather rare metals are used in the production of IGZO matrices, which makes large-scale production difficult.

Refresh rate

The frame rate supported by the laptop screen. In fact, in this case we are talking about the maximum frequency; the actual frame rate may be lower than this value, depending on the content being displayed — but not higher.

Theoretically, the higher the frame rate, the smoother the movement on the screen will look, the less moving objects will be blurred. In fact, the situation is such that even in relatively modest modern laptops, 60 Hz matrices are installed — in general, this is quite enough for the human eye, since a further increase in speed ( 90 Hz and higher) does not significantly improve the visible “picture”. However, in high-end gaming and multimedia models designed for demanding users, higher values — 120 Hz, 144 Hz, 165 Hz and even higher, namely 240 Hz and 300 Hz.

Contrast

The contrast of the screen installed in the laptop.

Contrast is the largest difference in brightness between the lightest white and darkest black that can be achieved on a single screen. It is written as a fraction, for example, 560:1; while the larger the first number, the higher the contrast, the more advanced the screen is and the better the image quality can be achieved on it. This is especially noticeable with large differences in brightness within a single frame: with low contrast, individual details located in the darkest or brightest parts of the picture may be lost, increasing the contrast allows you to eliminate this phenomenon to a certain extent. The flip side of these benefits is an increase in cost.

Separately, we emphasize that in this case only static contrast is indicated — the difference provided within one frame in normal operation, at constant brightness and without the use of special technologies. For advertising purposes, some manufacturers may also provide data on the so-called dynamic contrast — it can be measured in very impressive numbers (seven-digit or more). However, you should focus primarily on static contrast — this is the basic characteristic of any display.

As for specific values, even in the most advanced screens, this indicator does not exceed 2000: 1. But in general, modern laptops have a rather low contrast ratio — it is assumed that for tasks that require more advanced image characteristics, it is more...reasonable to use an external screen (monitor or TV).

Colour gamut (sRGB)

The colour gamut of the laptop matrix according to the Rec.709 colour model or according to sRGB.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

Specifically, sRGB and Rec.709 are the most popular of today's colour models; they have the same range and differ only in the scope (sRGB is used in computers, Rec. 709 is used in HDTV). Therefore, the closer the colour gamut is to 100%, the more accurately the colours on the screen will match the colours that were originally intended by the creator of the film, game, etc. At the same time, note that such accuracy is not particularly needed in everyday use — it critical only for professional work with colour; and even in such cases, it is more convenient to buy a separate monitor with a wide colour gamut for a laptop, rather than looking for a laptop with a high-quality (and, accordingly, expensive) matrix.

Colour gamut (Adobe RGB)

The colour gamut of the laptop matrix according to the Adobe RGB colour model.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

The Adobe RGB colour model was originally developed for print applications; the range of colours covered by it corresponds to the capabilities of professional printing equipment. Therefore, theoretically, the extensive coverage of this model will be useful to those involved in the design and layout of high-end printed products. However most laptop screens have very limited Adobe RGB values, rarely exceeding 74%; however, you can also find high-end models where this figure approaches 100%. Of course, the cost of such laptops will also be appropriate; therefore, it makes sense to pay attention to them, first of all, when the ability to work with colour “on the go” is of key importance. If this is to be done in one place, it may be more justified to buy a separate monitor with a wide colour gamut (especially since a monitor with such characteristics is easier to find than a laptop).

TÜV Rheinland certificate

Laptop display certification for safe blue light emission levels and panel flicker rates. The presence of a TÜV Rheinland certificate confirms that the screen is comfortable for the eyes.

TÜV Rheinland is a large international concern headquartered in Cologne, Germany, providing a wide range of audit services. The company's specialists have developed and approved a number of tests for the compliance of the screens of mobile devices, monitors and TVs with the required level of eye protection from the harmful effects of display radiation on the user's vision on the other side of the screen. The authoritative opinion of TÜV Rheinland is respected in the tech community. Certificates from this body are issued to successfully tested electronics for the implementation of blue light filtering and screen flicker suppression technologies.

Series

Each series combines chips that are similar in general level, purpose, and often also in individual specific features. Moreover, most series include processors of several generations at once, which can differ significantly in actual characteristics. It is worth noting that until recently laptops were equipped almost exclusively with processors from AMD or Intel - until in 2020 Apple introduced its own chip Apple M1 (with updated versions Apple M1 Pro and Apple M1 Max), Apple M2 (2022) with powerful chips M2 Pro, M2 Max and Apple M3, M3 Pro, M3 Max (2023). At the moment, the following series are mainly relevant in laptops:

AMD Ryzen 3. The most inexpensive series of AMD chips in the Ryzen family (Ryzen 3, Ryzen 5, Ryzen 7 and Ryzen 9) using the Zen microarchitecture. In terms of the general design, Ryzen 3 is similar to its older brothers, but half of the computing cores are deactivated. However, it is quite advanced and is found even in ultrabooks.
...> — Ryzen 5. The second series based on Zen architecture is a more affordable alternative to Ryzen 7 chips. Ryzen 5 chips have somewhat more limited performance characteristics (in particular, a lower clock frequency and, in some models, L3 cache size). Otherwise, they are completely similar to the “sevens” and are also positioned as high-performance chips for gaming and workstations. See "Ryzen 7" below for more details.

- Ryzen 7. The first series of processors from AMD, built on the Zen microarchitecture. It was introduced in March 2017. In general, Ryzen chips (of all series) are promoted as high-end solutions for gamers, developers, graphic designers and video editors. One of the main differences between Zen and previous microarchitectures was the use of simultaneous multithreading, due to which the number of operations per clock was significantly increased at the same clock frequency. In addition, each core received its own floating-point calculation unit, the speed of the first level cache increased, and the L3 cache capacity in Ryzen 7 chips is 16 MB as standard.

— Atom. Processors specifically designed by Intel for mobile devices (including smartphones). They are mainly used in ultra-compact laptops.

— Core M. Processors designed for portable equipment (in particular, ultra-compact laptops) and characterized by extremely low heat generation, allowing the use of passive cooling systems. They were introduced in 2014 as the first serial chips based on the 14 nm process technology.

Celeron. The most budget series in the modern line of desktop processors from Intel. However, the latest generations come with integrated graphics.

Pentium. Budget desktop processors from Intel, slightly superior in performance to Celeron, but not up to the Core i3. Also carry integrated graphics.

Processor. The entry-level processor line that precedes the Core i3 family in the modern Intel hierarchy. Such chipsets are found in entry-level laptops designed for everyday household or office use, as well as undemanding games.

- Core i3. A series of entry-level and mid-level processors, the most budget series in the Core ix family; however, it outperforms the Pentium and Celeron series.

— Core i5. A series of mid-range processors, both in general and in the Core ix family. The architecture is dual- or quad-core, they have a third-level cache, and many models are also equipped with a built-in graphics chip.

Core i7. A series of productive processors; before the advent of i9 was the most advanced in the "Core i" family. Core i7 chips have at least 4 cores, large level 3 cache and integrated graphics.

Core i9. Top-level processors released in 2017; the most powerful line of consumer-grade laptop processors at the time of its introduction, displacing Core i7 chips from this position. They have from 6 cores and a volume cache of level 3.

Core Ultra 5. Transformation of the popular series of mobile processors of the strong mid-range Intel Core i5, which received the Ultra prefix from the end of 2023 - when the Meteor Lake generation of chipsets debuted. The main feature of Core Ultra 5 processors is a separate NPU, which gives advantages when working with AI models.

Core Ultra 7. A pre-top series of high-performance mobile processors from Intel, which replaced the Core i7 family at the end of 2023 (with the advent of a new generation of Meteor Lake chipsets). A neural coprocessor responsible for accelerating the operation of artificial intelligence algorithms has become a mandatory attribute of Ultra models.

Core Ultra 9. A line of the most powerful laptop processors from Intel, released to replace the Core i9 family at the end of 2023. The premiere of models labeled Ultra took place in the generation of Meteor Lake chipsets. A distinctive feature of Intel Core Ultra 9 is the presence of a separate NPU to improve the efficiency of using artificial intelligence models.

— Apple. A series of processors from Apple, which debuted in November 2020 along with the release of the next generations of MacBook, MacBook Air and MacBook Pro. In the initial configurations, they are equipped with 8 cores - 4 productive and 4 economical; the latter, according to the creators, consume 10 times less energy than the former. This, combined with the 5 nm process technology, has made it possible to achieve very high energy efficiency and at the same time performance. It is also worth noting that the processors of this series are made according to the system-on-chip scheme: a single module combines a CPU, a graphics adapter, RAM (in the first models - 8 or 16 GB), an NVMe solid-state drive and some other components (in particularly Thunderbolt 4 controllers).

Model

The specific model of the processor installed in the laptop, or rather, the processor index within its series (see above). Knowing the full name of the processor (series and model), you can find detailed information on it (up to practical reviews) and clarify its capabilities.

Code name

The code name for CPU installed in the laptop.

This parameter characterizes, first of all, the generation to which the processor belongs, and the microarchitecture used in it. At the same time, chips with different code names can belong to the same microarchitecture/generation; in such cases, they differ in other parameters - general positioning, belonging to certain series (see above), the presence / absence of certain specific functions, etc.

Nowadays, the following code names are relevant in Intel processors: Coffee Lake, Comet Lake, Ice Lake, Tiger Lake, Jasper Lake, Alder Lake, Raptor Lake (13th Gen), Alder Lake-N, Raptor Lake (14th Gen), Meteor Lake (Series 1), Raptor Lake (Series 1). For AMD, the list looks like this: Zen 2 Renoir, Zen 2 Lucienne, Zen 3 Cezanne, Zen 3 Barcelo, Zen 3+ Rembrandt, Zen 3+ Rembrandt R, Zen 2 Mendocino, Zen 3 Barcelo R, Zen 4 Dragon Range, Zen 4 Phoenix Zen 4 Hawk Point. Detailed data on different code names can be found in special sources.
Lenovo V15 G2 ALC often compared
Asus TUF Gaming F15 FX506HC often compared