United Kingdom
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Acer Nitro 5 AN515-57 [AN515-57-546C] vs Asus TUF Gaming F15 FX506LHB [FX506LHB-HN324]

Add to comparison
Acer Nitro 5 AN515-57 (AN515-57-546C)
Asus TUF Gaming F15 FX506LHB (FX506LHB-HN324)
Acer Nitro 5 AN515-57 [AN515-57-546C]Asus TUF Gaming F15 FX506LHB [FX506LHB-HN324]
Outdated ProductOutdated Product
TOP sellers
Typelaptoplaptop
Screen
Screen size15.6 "15.6 "
Screen typeIPSIPS
Surface treatmentmatteanti-glare
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Response time3 ms
Refresh rate144 Hz144 Hz
Brightness300 nt250 nt
Contrast1000 :1
Colour gamut (sRGB)63 %
Colour gamut (Adobe RGB)47 %
Colour gamut (NTSC)72 %45 %
CPU
SeriesCore i5Core i5
Model11400H10300H
Code nameTiger Lake (11th Gen)Comet Lake (10th Gen)
Processor cores6 cores4
Total threads128
CPU speed2.7 GHz2.5 GHz
TurboBoost / TurboCore frequency4.5 GHz4.5 GHz
CPU TDP45 W45 W
3DMark0612041 score(s)9744 score(s)
Passmark CPU Mark14475 score(s)8808 score(s)
SuperPI 1M7.5 с8.72 с
RAM
RAM16 GB16 GB
Max. RAM32 GB32 GB
RAM typeDDR4DDR4
RAM speed3200 MHz2933 MHz
Slots22
Graphics card
Graphics card typededicateddedicated
Graphics card seriesNVIDIA GeForceNVIDIA GeForce
Graphics card modelRTX 3060GTX 1650
Video memory6 GB4 GB
Memory typeGDDR6GDDR6
GPU TDP95 W
VR
3DMark0641961 points34484 points
3DMark Vantage P31310 points
Storage
Drive typeSSD M.2 NVMeSSD M.2 NVMe
Drive capacity512 GB512 GB
M.2 drive interfacePCI-E 3.0 4xPCI-E 3.0
M.2 connector interfacePCI-E 3.0 4x
M.2 drive size22x80 mm22x80 mm
Additional 2.5" slot
Additional M.2 connector11
Addittional M.2 connectors interfacePCI-E 3.0 4xPCI-E 3.0 4x
Additional M.2 drive size22x80 mm22x80 mm
Connections
Connection ports
HDMI
v 2.1
HDMI
v 2.0b
Card reader
USB 2.01 pc
USB 3.2 gen122
USB 3.2 gen21 pc
USB C 3.2 gen11 pc
USB41
Thunderbolt interfacex1 v4
Alternate Mode
Monitors connection22
LAN (RJ-45)1 Gbps1 Gbps
Wi-FiWi-Fi 6 (802.11ax)Wi-Fi 6 (802.11ax)
Bluetoothv 5.1v 5.2
Multimedia
Webcam1280x720 (HD)1280x720 (HD)
Camera shutter
Speakers22
Audio decodersDTS X UltraDTS X Ultra
Security
kensington / Noble lock
kensington / Noble lock
Keyboard
BacklightRGBRGB
Lighthing syncAsus Aura Sync
Key designisland typeisland type
Num block
Additional keys1
Input devicetouchpadtouchpad
Battery
Battery capacity3733 mAh
Battery capacity58 W*h48 W*h
Battery voltage15.4 V
Operating time8 h
Powered by USB-C (Power Delivery)
Fast charge
Power supply Included180 W150 W
General
Preinstalled OSEndless OSno OS
MIL-STD-810 Military Standard
Materialmatte plasticaluminium / plastic
Dimensions (WxDxT)363x255x24 mm359x256x25 mm
Weight2.2 kg2.3 kg
Color
Added to E-Catalogapril 2023september 2022

Surface treatment

Glossy. A glossy surface improves the overall picture quality: other things being equal, the picture on such a screen looks brighter and more colorful than on a matte one. On the other hand, pollution is very noticeable on such a surface, and in bright external lighting, a lot of glare appears on it, which can greatly interfere with viewing. Therefore, instead of the classic gloss, laptops are increasingly using an anti-reflective version of such a coating (see below). Nevertheless, this option still does not lose popularity: it is somewhat cheaper than the “anti-glare”, and in soft, relatively dim lighting, it can even provide a more pleasing image to the eye.

Matte. Matte finish is inexpensive and does not form glare even from fairly bright lighting. On the other hand, the picture on such a screen is noticeably dimmer than on a similar glossy display. However, this moment can be compensated by various design solutions (primarily a good margin of brightness); so this option can be found in all categories of modern laptops — from low-cost models for working with documents to top gaming configurations.

Glossy (anti-glare). A variation on the glossy finish described above, designed to reduce glare from external light sources. Such screens really glare noticeably less than traditional glossy ones (or even do not give glare at all); at the same time, in...terms of image quality, they are at least superior to matte ones. So it is this type of coating that is most popular nowadays.

Response time

Screen response time to a control signal — in other words, the time between the receipt of such a signal on the matrix and the switching of pixels to a given mode.

Theoretically, the lower the response time, the better the screen handles with dynamic scenes, the higher the frame rate on it can be achieved. At the same time, it is worth noting that almost all modern matrices have sufficient response speed to effectively process the classic frame rate of 60 Hz — and, recall, it is quite enough for most cases. So paying attention to this parameter makes sense, first of all, if you are purchasing an advanced gaming model, the screen of which operates at a frame rate of more than 60 Hz. In other cases, the response time is often not indicated at all.

Brightness

The maximum brightness that a laptop screen can provide.

The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.

As for specific values, many modern laptops have a brightness of 250 – 300 nt and even lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least 300 – 350 nt. And in the most advanced models, this parameter can be 350 – 400 nt and even more.

Contrast

The contrast of the screen installed in the laptop.

Contrast is the largest difference in brightness between the lightest white and darkest black that can be achieved on a single screen. It is written as a fraction, for example, 560:1; while the larger the first number, the higher the contrast, the more advanced the screen is and the better the image quality can be achieved on it. This is especially noticeable with large differences in brightness within a single frame: with low contrast, individual details located in the darkest or brightest parts of the picture may be lost, increasing the contrast allows you to eliminate this phenomenon to a certain extent. The flip side of these benefits is an increase in cost.

Separately, we emphasize that in this case only static contrast is indicated — the difference provided within one frame in normal operation, at constant brightness and without the use of special technologies. For advertising purposes, some manufacturers may also provide data on the so-called dynamic contrast — it can be measured in very impressive numbers (seven-digit or more). However, you should focus primarily on static contrast — this is the basic characteristic of any display.

As for specific values, even in the most advanced screens, this indicator does not exceed 2000: 1. But in general, modern laptops have a rather low contrast ratio — it is assumed that for tasks that require more advanced image characteristics, it is more...reasonable to use an external screen (monitor or TV).

Colour gamut (sRGB)

The colour gamut of the laptop matrix according to the Rec.709 colour model or according to sRGB.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

Specifically, sRGB and Rec.709 are the most popular of today's colour models; they have the same range and differ only in the scope (sRGB is used in computers, Rec. 709 is used in HDTV). Therefore, the closer the colour gamut is to 100%, the more accurately the colours on the screen will match the colours that were originally intended by the creator of the film, game, etc. At the same time, note that such accuracy is not particularly needed in everyday use — it critical only for professional work with colour; and even in such cases, it is more convenient to buy a separate monitor with a wide colour gamut for a laptop, rather than looking for a laptop with a high-quality (and, accordingly, expensive) matrix.

Colour gamut (Adobe RGB)

The colour gamut of the laptop matrix according to the Adobe RGB colour model.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

The Adobe RGB colour model was originally developed for print applications; the range of colours covered by it corresponds to the capabilities of professional printing equipment. Therefore, theoretically, the extensive coverage of this model will be useful to those involved in the design and layout of high-end printed products. However most laptop screens have very limited Adobe RGB values, rarely exceeding 74%; however, you can also find high-end models where this figure approaches 100%. Of course, the cost of such laptops will also be appropriate; therefore, it makes sense to pay attention to them, first of all, when the ability to work with colour “on the go” is of key importance. If this is to be done in one place, it may be more justified to buy a separate monitor with a wide colour gamut (especially since a monitor with such characteristics is easier to find than a laptop).

Colour gamut (NTSC)

The colour gamut of the laptop matrix according to the NTSC colour model.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

Specifically, NTSC is one of the first colour models created back in 1953 for colour television. It is not used in the production of modern LCD matrices, but is used to describe and compare them. NTSC covers a wider range of colours than sRGB, which is standard in computer technology; therefore, even a small number of percentages in this case corresponds to a fairly wide coverage. For example, a value of 72% or more in NTSC is already considered a good value for use in design and graphics. At the same time, the same NTSC figures on different screens may correspond to different sRGB figures; so if accurate colour reproduction is decisive for you, these details should be clarified before buying.

Also note that among individual monitors, it is easier to find a screen with a wide colour gamut; while it will also cost less than a laptop with similar display characteristics. So choosing a laptop with a h...igh-end screen makes sense mainly when portability is as important to you as high-quality colour reproduction.

Model

The specific model of the processor installed in the laptop, or rather, the processor index within its series (see above). Knowing the full name of the processor (series and model), you can find detailed information on it (up to practical reviews) and clarify its capabilities.

Code name

The code name for CPU installed in the laptop.

This parameter characterizes, first of all, the generation to which the processor belongs, and the microarchitecture used in it. At the same time, chips with different code names can belong to the same microarchitecture/generation; in such cases, they differ in other parameters - general positioning, belonging to certain series (see above), the presence / absence of certain specific functions, etc.

Nowadays, the following code names are relevant in Intel processors: Coffee Lake, Comet Lake, Ice Lake, Tiger Lake, Jasper Lake, Alder Lake, Raptor Lake (13th Gen), Alder Lake-N, Raptor Lake (14th Gen), Meteor Lake (Series 1), Raptor Lake (Series 1), Lunar Lake (Series 2). For AMD, the list looks like this: Zen 2 Renoir, Zen 2 Lucienne, Zen 3 Cezanne, Zen 3 Barcelo, Zen 3+ Rembrandt, Zen 3+ Rembrandt R, Zen 2 Mendocino, Zen 3 Barcelo R, Zen 4 Dragon Range, Zen 4 Phoenix Zen 4 Hawk Point, Zen 5 Strix Point. Detailed data on different code names can be found in special sources.
Acer Nitro 5 AN515-57 often compared
Asus TUF Gaming F15 FX506LHB often compared