Dark mode
United Kingdom
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Lenovo IdeaPad Gaming 3 15ACH6 [3 15ACH6 82K2028BPB] vs Acer Aspire 7 A715-42G [A715-42G-R1A5]

Add to comparison
Lenovo IdeaPad Gaming 3 15ACH6 (3 15ACH6 82K2028BPB)
Acer Aspire 7 A715-42G (A715-42G-R1A5)
Lenovo IdeaPad Gaming 3 15ACH6 [3 15ACH6 82K2028BPB]Acer Aspire 7 A715-42G [A715-42G-R1A5]
Compare prices 1Outdated Product
User reviews
TOP sellers
Typelaptoplaptop
Screen
Screen size15.6 "15.6 "
Screen typeIPSIPS
Surface treatmentanti-glarematte
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Refresh rate144 Hz60 Hz
Brightness300 nt
Contrast1000 :1
Colour gamut (NTSC)45 %45 %
AMD compatibilityAMD FreeSync
CPU
SeriesRyzen 5Ryzen 5
Model5500H5500U
Code nameCezanne (Zen 3)Lucienne (Zen 2)
Processor cores46
Total threads812
CPU speed3.3 GHz2.1 GHz
TurboBoost / TurboCore frequency4.2 GHz4 GHz
CPU TDP45 W25 W
3DMark068635 score(s)
Passmark CPU Mark13714 score(s)
SuperPI 1M10.46 с
RAM
RAM16 GB8 GB
Max. RAM16 GB32 GB
RAM typeDDR4DDR4
RAM speed3200 MHz3200 MHz
Slots22
Graphics card
Graphics card typededicateddedicated
Graphics card seriesNVIDIA GeForceNVIDIA GeForce
Graphics card modelRTX 2050GTX 1650
Video memory4 GB4 GB
Memory typeGDDR6GDDR6
3DMark0640490 points34485 points
3DMark Vantage P46821 points31311 points
Storage
Drive typeSSD M.2 NVMeSSD M.2 NVMe
Drive capacity512 GB256 GB
M.2 drive interfacePCI-E 4.0 4xPCI-E 3.0 4x
M.2 drive size22x42 mm22x80 mm
Additional 2.5" slot
Additional M.2 connector1
Addittional M.2 connectors interfacePCI-E 3.0 4x
Additional M.2 drive size22x80 mm
Connections
Connection ports
HDMI
v 2.0
HDMI
 
Card reader
USB 2.01 pc
USB 3.2 gen122
USB C 3.2 gen11 pc1 pc
Alternate Mode
Monitors connection11
LAN (RJ-45)1 Gbps1 Gbps
Wi-FiWi-Fi 5 (802.11ac)Wi-Fi 6 (802.11ax)
Bluetoothv 5.0v 5.1
Multimedia
Webcam1280x720 (HD)1280x720 (HD)
Camera shutter
Speakers22
Security
 
 
fingerprint scanner
kensington / Noble lock
Keyboard
Backlightwhitewhite
Key designisland typeisland type
Num block
Input devicetouchpadtouchpad
Battery
Battery capacity45 W*h48 W*h
Operating time5 h11.5 h
Powered by USB-C (Power Delivery)
Fast charge
Charging time50% in 30 min
Power supply Included135 W135 W
General
Preinstalled OSWindows 11 HomeEndless OS
Materialmatte plasticmatte plastic
Dimensions (WxDxT)360x252x24 mm363x255x23 mm
Weight2.3 kg2.2 kg
Color
Added to E-Catalogdecember 2023march 2021

Surface treatment

Glossy. A glossy surface improves the overall picture quality: other things being equal, the picture on such a screen looks brighter and more colorful than on a matte one. On the other hand, pollution is very noticeable on such a surface, and in bright external lighting, a lot of glare appears on it, which can greatly interfere with viewing. Therefore, instead of the classic gloss, laptops are increasingly using an anti-reflective version of such a coating (see below). Nevertheless, this option still does not lose popularity: it is somewhat cheaper than the “anti-glare”, and in soft, relatively dim lighting, it can even provide a more pleasing image to the eye.

Matte. Matte finish is inexpensive and does not form glare even from fairly bright lighting. On the other hand, the picture on such a screen is noticeably dimmer than on a similar glossy display. However, this moment can be compensated by various design solutions (primarily a good margin of brightness); so this option can be found in all categories of modern laptops — from low-cost models for working with documents to top gaming configurations.

Glossy (anti-glare). A variation on the glossy finish described above, designed to reduce glare from external light sources. Such screens really glare noticeably less than traditional glossy ones (or even do not give glare at all); at the same time, in...terms of image quality, they are at least superior to matte ones. So it is this type of coating that is most popular nowadays.

Refresh rate

The frame rate supported by the laptop screen. In fact, in this case we are talking about the maximum frequency; the actual frame rate may be lower than this value, depending on the content being displayed — but not higher.

Theoretically, the higher the frame rate, the smoother the movement on the screen will look, the less moving objects will be blurred. In fact, the situation is such that even in relatively modest modern laptops, 60 Hz matrices are installed — in general, this is quite enough for the human eye, since a further increase in speed ( 90 Hz and higher) does not significantly improve the visible “picture”. However, in high-end gaming and multimedia models designed for demanding users, higher values — 120 Hz, 144 Hz, 165 Hz and even higher, namely 240 Hz and 300 Hz.

Brightness

The maximum brightness that a laptop screen can provide.

The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.

As for specific values, many modern laptops have a brightness of 250 – 300 nt and even lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least 300 – 350 nt. And in the most advanced models, this parameter can be 350 – 400 nt and even more.

Contrast

The contrast of the screen installed in the laptop.

Contrast is the largest difference in brightness between the lightest white and darkest black that can be achieved on a single screen. It is written as a fraction, for example, 560:1; while the larger the first number, the higher the contrast, the more advanced the screen is and the better the image quality can be achieved on it. This is especially noticeable with large differences in brightness within a single frame: with low contrast, individual details located in the darkest or brightest parts of the picture may be lost, increasing the contrast allows you to eliminate this phenomenon to a certain extent. The flip side of these benefits is an increase in cost.

Separately, we emphasize that in this case only static contrast is indicated — the difference provided within one frame in normal operation, at constant brightness and without the use of special technologies. For advertising purposes, some manufacturers may also provide data on the so-called dynamic contrast — it can be measured in very impressive numbers (seven-digit or more). However, you should focus primarily on static contrast — this is the basic characteristic of any display.

As for specific values, even in the most advanced screens, this indicator does not exceed 2000: 1. But in general, modern laptops have a rather low contrast ratio — it is assumed that for tasks that require more advanced image characteristics, it is more...reasonable to use an external screen (monitor or TV).

AMD compatibility

The laptop supports AMD FreeSync technology and its more advanced varieties (FreeSync Premium, FreeSync Premium Pro). Here are more details about them:

– AMD FreeSync. This function is found only in models equipped with discrete AMD graphics cards. It serves to match the frame rate of the screen and the frame rate of the incoming signal so that the frequencies match. This allows you to avoid flickering, jerking and other image defects that occur due to signal desynchronization. This function is especially useful for games where the frame rate of the video signal can “float” depending on the load on the graphics core; in fact, most laptops with FreeSync are specifically gaming laptops.

– AMD FreeSync Premium. An intermediate option between the core AMD FreeSync technology and the advanced FreeSync Premium Pro implementation. The Premium version does not have HDR support (unlike Pro), but it works at the same frame rate (at least 120 fps at a resolution of 1920x1080) and uses LFC low frame rate compensation technology.

– FreeSync Premium Pro. The most advanced version of FreeSync technology, formerly known as AMD FreeSync 2 HDR. As the original name suggests, one of the highlights of this edition is HDR support. FreeSync Premium Pro claims a frame rate of at least 120 fps at Full HD resolution, as well as a low frame rate compensation (LFC) function. According to the creators, FreeSync Premium Pro works espec...ially well in games; and many modern games are initially created to work with this technology.

NVIDIA video cards use a similar technology called G-Sync.

Model

The specific model of the processor installed in the laptop, or rather, the processor index within its series (see above). Knowing the full name of the processor (series and model), you can find detailed information on it (up to practical reviews) and clarify its capabilities.

Code name

The code name for CPU installed in the laptop.

This parameter characterizes, first of all, the generation to which the processor belongs, and the microarchitecture used in it. At the same time, chips with different code names can belong to the same microarchitecture/generation; in such cases, they differ in other parameters - general positioning, belonging to certain series (see above), the presence / absence of certain specific functions, etc.

Nowadays, the following code names are relevant in Intel processors: Coffee Lake, Comet Lake, Ice Lake, Tiger Lake, Jasper Lake, Alder Lake, Raptor Lake (13th Gen), Alder Lake-N, Raptor Lake (14th Gen), Meteor Lake (Series 1), Raptor Lake (Series 1), Lunar Lake (Series 2). For AMD, the list looks like this: Zen 2 Renoir, Zen 2 Lucienne, Zen 3 Cezanne, Zen 3 Barcelo, Zen 3+ Rembrandt, Zen 3+ Rembrandt R, Zen 2 Mendocino, Zen 3 Barcelo R, Zen 4 Dragon Range, Zen 4 Phoenix Zen 4 Hawk Point, Zen 5 Strix Point. Detailed data on different code names can be found in special sources.

Processor cores

The number of cores in the laptop CPU.

The core is a part of the CPU designed to process one thread of instructions (and sometimes more, for such models, see "Number of threads"). Nowadays, in laptops you can find dual-core, quad-core, six-core, eight-core, ten-core, 12-core, 14-core CPUs. Also note that recently configurations with different types of cores as part of a single CPU are gaining popularity. Such chips are built on a hybrid architecture that combines high performance and energy-efficient cores. They operate at different clock speeds, have different amounts of pre-installed cache memory and are designed to solve different problems. In particular, such CPUs are found in Intel CPUs (from the 12th generation) and Apple.

Theoretically, more cores means higher performance, especially in parallel computing tasks or when processing multiple resource-intensive tasks at the same time. However, in practice this is true only all else being equal – that is, with a similar microarchitecture, clock frequency, cache volumes and other key parameters. Modern CPUs can vary greatly on these parameters – in itself, a greater number of cores does not mean superiority. This is especially true for dual- and quad-core chips: a mobil...e-level CPU (for example, Snapdragon, see "CPU series") with 4 cores may well be inferior in capabilities to a dual-core desktop series chip (like Core i3 or i5, which are often used in universal laptops with the "optimal" set of specifications for different tasks). When evaluating CPUs with two or four cores, it is necessary to look, first of all, at the general set of characteristics. But the presence of six, eight or more cores is almost certainly a sign of a powerful CPU. Such equipment is typical mainly for advanced gaming and professional laptops.

Total threads

The number of threads supported by the laptop processor.

A thread is a sequence of instructions executed by a processor. Initially, each processor core was designed for one such sequence, and the number of threads was equal to the number of cores. However, in modern CPUs, multithreading technologies are increasingly being used, which allow loading each core with two instruction sequences at once. Such technologies have different names for different manufacturers, but the principle of their operation is the same: during the inevitable pauses in the execution of one of the threads, the kernel does not idle, but works with a different sequence. Accordingly, the total number of threads in such processors is twice the number of cores; such a scheme of work significantly increases productivity (although, of course, it also affects the cost).