Dark mode
United Kingdom
Catalog   /   Computing   /   Components   /   PSUs

Comparison Zalman Wattbit II ZM400-XEII vs 1stPlayer Black Widows PS-400SFX APFC

Add to comparison
Zalman Wattbit II ZM400-XEII
1stPlayer Black Widows PS-400SFX APFC
Zalman Wattbit II ZM400-XEII1stPlayer Black Widows PS-400SFX APFC
Outdated ProductOutdated Product
User reviews
0
1
0
2
TOP sellers
Power400 W400 W
Form factorATXSFX
Specs
PFCactive
Efficiency83 %87 %
Cooling system1 fan1 fan
Fan size120 mm80 mm
Certificationwithout 80+80+ Bronze
Power connectors
MB/CPU power supply24+8 (4+4) pin24+8 (4+4) pin
SATA43
MOLEX33
PCI-E 8pin (6+2)21
Cable systemnon-modularnon-modular
Cable length
MB500 mm
CPU600 mm
SATA450 mm
MOLEX450 mm
PCI-E450 mm
Max. power
+3.3V16 А
+5V15 А
+12V130 А
-12V0.3 А
+5Vsb2 А
+12V360 W
+3.3V +5V100 W
-12V3.6 W
+5Vsb10 W
General
Over voltage protection (OVP)
Over power protection (OPP)
Short circuit protection (SCP)
Manufacturer's warranty2 years3 years
Dimensions (HxWxD)86x150x140 mm
Added to E-Catalogfebruary 2021january 2021

Form factor

The form factor determines, first of all, the dimensions, and, as a result, the purpose of the power supply. To date, there are such main form factors:

ATX. Conventionally, it can be called "standard" — this is the most common form factor for regular-sized desktop PCs (in Full Tower and Midi Tower cases).

TFX. Compact form factor, designed specifically for small cases (in particular, Mini Tower). Due to their intended use, these power supplies are typically lower than full-sized ATX power supplies, while electrically they are fully ATX compliant.

SFX. Modification of the ATX form factor, developed at the end of the 20th century as a power supply option for systems in miniature microATX and FlexATX form factors (the S in the name stands for "small", i.e. "small"). Accordingly, the main difference is the dimensions: they are much smaller and amount to (width-depth-height) 100x125x64 mm with a standard 60 mm fan. When installing larger or smaller fans, the height of the unit changes accordingly; there are other deviations from the standard (for example, a slightly greater depth). The power connectors are almost identical to the original ATX, and these two standards are considered completely interchangeable.

PFC

The type of power factor correction (PFC) provided in the power supply.

The power consumed by the PSU is divided into active and reactive; the first goes to perform useful work, the second does not produce such work and is dissipated in the form of heat. The power factor is the ratio of active power to the total power consumed; the closer it is to one, the more efficient the PSU.

PFC correction is applied to improve the power factor. It can be done passively or actively. The first option provides the presence of a coil (choke), which partly compensates for the operation of the reactive components of the PSU; such a correction is simple and inexpensive to implement, but not very effective. The active method, in turn, provides the presence of a specialized controller. It is more expensive, but the power factor in such PSUs can reach 0.95 or more; in addition, the device is more resistant to voltage drops.

In general, for use in a home or small office, passive correction is more than enough; active PSUs should be specifically looked for mainly in cases where we are talking about numerous computers connected to a powerful UPS.

Efficiency

Efficiency, in this case — the ratio of the power of the power supply (see "Power") to its power consumption. The higher the efficiency, the more efficient the power supply, the less energy it consumes from the network at the same output power, and the cheaper it is to operate. Efficiency may differ depending on the load; the characteristics can indicate both the minimum efficiency and its value at an average load (50%).

It should be noted that compliance with one or another level of 80PLUS efficiency directly depends on this indicator (for more details, see "Certificate").

Fan size

The diameter of the fan(s) in the power supply cooling system.

The large diameter allows to achieve good efficiency at relatively low RPMs, which in turn reduces noise and power consumption. On the other hand, large fans are more expensive than small ones and take up a lot of space, which affects the dimensions of the entire PSU. We also emphasize that a small fan is not yet a sign of a cheap power supply — quite advanced models can also have such equipment, in order to reduce dimensions.

As for specific diameters, the smallest value that can be found in modern consumer-grade PSUs is 80 mm. The most popular option is 120 mm, this size gives good efficiency and a relatively low noise level at a reasonable price and dimensions. Larger diameters are somewhat less common — 135 mm and 140 mm.

Certification

The presence or absence of an 80+ certificate for the power supply. This certificate indicates high energy efficiency: to obtain it, the efficiency (see above) must be at least 80%, and in different modes (20%, 50% and 100% of the maximum load). There are several degrees of 80+:

80+. The original version of the certificate, assuming an efficiency of at least 82% (at least 85% for 50% load).

80+ White. The second name of the original 80+ certificate (see above).

80+ Bronze — efficiency not less than 85% (for half load — 88%).

80+ Silver — respectively 87% (90% for half load).

80+ Gold — 89% (92% for half load)

80+ Platinum — 90% (94% for half load).

80+ Titanium — 94% (96% for half load).

The power factor (see "PFC Type") must be at least 0.9 for the lower levels and at least 0.95 for the Platinum level. Also note that for redundant power used in server systems, the efficiency requirements are somewhat lower.

SATA

The number of SATA power connectors provided in the PSU.

Nowadays, SATA is the standard interface for connecting internal hard drives, and it is also found in other types of drives (SSD, SSHD, etc.). Such an interface consists of a data connector connected to the motherboard, and a power connector connected to the PSU. Accordingly, in this paragraph we are talking about the number of SATA power plugs provided in the PSU. This number corresponds to the number of SATA drives that can be simultaneously powered from this model.

PCI-E 8pin (6+2)

The number of PCI-E 8pin (6+2) power connectors provided in the PSU design.

Additional PCI-E power connectors (all formats) are used to additionally power those types of internal peripherals for which 75 W is no longer enough, supplied directly through the PCI-E socket on the motherboard (video cards are a typical example). In PC components, there are two types of such connectors — 6pin, providing up to 75 W of additional power, and 8pin, giving up to 150 W. And the 8pin (6 + 2) plugs used in power supplies are universal: they can work with both 6-pin and 8-pin connectors on the expansion board. Therefore, this type of plug is the most popular in modern PSUs.

As for the quantity, on the market you can find models for 1 PCI-E 8pin (6 + 2) connector, for 2 such connectors, for 4 connectors, and in some cases — for 6 or more. Several of these plugs can be useful, for example, when connecting several video cards — or for a powerful high-performance video adapter equipped with several PCI-E additional power connectors.

+3.3V

The maximum values of current and power that the PSU can provide on individual power lines.

The power line can be simply described as a pair of contacts for connecting a particular load; one of these contacts is “ground” (with zero voltage), and the second has a certain voltage with a plus or minus sign, this voltage corresponds to the voltage of the power line. In this paragraph, it is + 3.3V (such power is present in 20- and 24-pin connectors for motherboards, in SATA power connectors and some other types of connectors).

In general, power and currents are rather specific parameters that the average user rarely needs — mainly when connecting high-power components such as video cards, as well as when starting a PSU without a computer to power other electronics (for example, amateur radio stations). It is also worth mentioning that the sum of the maximum powers on all lines can be higher than the total output power of the PSU — this means that all lines cannot operate at full power at the same time. Accordingly, when the PSU is fully loaded, some of them will produce less power than the maximum possible.

+5V

The maximum current that the PSU is capable of issuing + 5V to the power line. For more information about power lines in general, see "+3.3V". Also note here that + 5V power, in addition to connectors for motherboards (for 20 and 24 pins), is also found in Molex and SATA plugs, as well as some other specific types of connectors.
Zalman Wattbit II often compared