Bottom thickness
In general, a thick bottom is considered more preferable than a thin one: the thicker the bottom, the more evenly the heat is distributed over it, the higher the quality of cooking and the lower the likelihood that the product will burn in some places. In addition, thick material is less prone to deformation from strong heat and temperature changes. True, the massive bottom also affects the weight of the product, but in most cases this moment is not significant - on the contrary, it contributes to the stability of the pan and reduces the risk of tipping it over by negligence. Of the unequivocal disadvantages, only the high cost
of thick pans can be noted, but it is usually justified taking into account performance.
It is believed that for most cases a bottom thickness of at least 5 mm is desirable. However, in pans for pancakes (see "Type") and other "quick" fried foods, smaller indicators are also allowed - from 3 mm. As a rule, the bottom thickness corresponds to the wall thickness (see below), but exceptions are possible.
Wall thickness
The thickness of the walls of the pan.
Thick material weighs more and costs more, but these disadvantages are outweighed by a number of advantages. Firstly,
thicker walls distribute and retain heat more evenly, and also reduce the likelihood of overheating; all this is especially important when stewing, simmering and other similar cooking methods. Secondly, a large weight reduces the likelihood of overturning the pan, inadvertently hitting it. Thirdly, thick material better resists strong heat and temperature changes.
The minimum indicator for a quality pan is a wall thickness of 3 mm, and ideally it should be 5 mm or more.
Pan material
The material from which the pan is made.
Aluminium is the most popular nowadays, it is available on the market in several versions —
stamped,
cast,
forged, plus all three of these varieties can be
anodized. Noticeably fewer frying pans are made of
cast iron and
steel, but a lot of such products are also produced. But
copper and ceramics are very rare, even exotic options nowadays.
Here is a more detailed description of each of the mentioned materials:
— Cast iron. A classic material, thanks to a number of characteristics, has not lost popularity nowadays. Its main feature is the combination of high heat capacity and relatively low thermal conductivity. This means that the cast-iron pan heats up slowly, but evenly, and cools just as slowly; while cast iron easily tolerates high temperatures. This property makes cast iron pans very versatile and suitable for both "slow" and "fast" fires. This material is usually not coated with a non-stick coating, however, subject to certain care rules, cast iron itself can acquire similar properties — to the point that some dishes can not be stirred at all when cooking on cast iron. Frying pans made of this material are very weighty, but many
...consider this an advantage — a heavy pan is as stable as possible. Of the obvious disadvantages, one can name the tendency to corrosion (which requires careful observance of the rules of care), as well as relative fragility — cast iron can crack from an impact that steel or aluminium would have completely endured. Also, food cannot be stored in such dishes — its taste deteriorates.
— Steel. Stainless steel is considered one of the safest materials: it is chemically inert and does not tend to interact with food and other substances. Also, this material is durable, resistant to impacts, weighs significantly less than cast iron and at the same time massive enough to ensure stability. On the other hand, steel also has a number of disadvantages. So, due to the high thermal conductivity, it heats up unevenly, and it does not tolerate high temperatures well — characteristic iridescent stains of the “tint colour” appear. Food in such pans tends to burn — in the end, you either have to put up with this, or look for models with a non-stick coating (and here safety is already determined by the properties of this coating, see below). Washing steel utensils is also quite difficult — abrasive detergents scratch the coating and spoil the appearance, and without them it can take a lot of time and effort.
— Aluminium. The main advantage of aluminium is its low price and, accordingly, availability. Also, it is characterized by good strength, high thermal conductivity and, accordingly, fast heating, and such pans cool down for quite a long time. However, this material also has a number of significant drawbacks. For example, food in an aluminium pan tends to burn, and washing it is associated with a number of difficulties — it is undesirable to use acids and alkalis, the coating is easily scratched. In addition, thin pans are very sensitive to overheating and can warp; this is especially critical on electric stoves, where it is quite difficult to control the temperature, and a flat bottom of the dishes is especially important. Light weight can be called both an advantage and a disadvantage of aluminium: it reduces the stability of the pan, but also makes it easier to work with it. As a result of all of the above, this material is used mainly in inexpensive dishes. Aluminium frying pans can be produced using different technologies, they are described in more detail below; here we note that if the characteristics of the pan indicate simply “aluminium”, then most likely we are talking about a stamped product.
— Extruded aluminium. Stamping is the simplest technology for the production of aluminium pans, it is inexpensive. However, the quality of such products, usually, does not shine: the thermal conductivity is relatively low, and the sensitivity to overheating and the tendency to deformation are high. However, these moments can be partly offset by an increase in thickness or the use of additional inserts; the most advanced of the "thick" aluminium frying pans can be comparable in performance to cast products (see below).
— Forged aluminium. Forging technology in the case of frying pans is good in that it provides the fibrous structure of the metal. This has a positive effect on strength and weight and provides quite decent performance (in particular, thermal conductivity) even with a relatively small material thickness. However forged pans are somewhat more expensive than stamped ones.
— Cast aluminium. This technology involves the manufacture of dishes by pouring molten aluminium into special molds. It is considered the most advanced, because. casting provides an optimal metal structure, as a result — excellent thermal conductivity and high reliability. However such pans are more expensive than forged and, moreover, stamped, and they weigh a little more (the latter, however, is not necessarily a drawback).
— Anodized aluminium. The term "anodized" does not describe the production technology of the cookware itself, but a specific way of processing the aluminium surface; the dishes themselves can be stamped, forged, and cast (see above). When anodized, a strong protective layer is formed on the aluminium surface, which prevents metal from coming into contact with the contents of the pan. This layer is resistant to acids; and if it is not recommended to store food for a long time or cook “sour” dishes in an ordinary aluminium frying pan, then the anodized one has no such restrictions. And in general, such a coating is considered absolutely safe for humans. The disadvantage of this option is traditional — the high price.
— Copper. One of the key advantages of copper is its unusual appearance; thanks to the reddish-golden colour, such dishes really look beautiful and stylish. On the practical side, this material is notable for its high thermal conductivity, thanks to which the pan heats up quickly and evenly — and this contributes to high-quality and fast cooking. Copper is not suitable for regular contact with food — this leads to oxidation and the appearance of harmful substances; however, this disadvantage is compensated by the use of additional coatings (eg, tin or steel). But the unequivocal disadvantage of this material is the high cost. In addition, the copper surface loses its luster literally after the first cooking, and to restore its appearance, it must be washed manually with special products. Thus, few copper pans are produced nowadays, mainly these are “designer” dishes designed for kitchens of a certain style.
— Ceramics. Ceramics accumulates and retains heat well, moreover, it tolerates even strong heat without problems and allows the use of the oven without any restrictions. On the other hand, the thermal conductivity of this material is not very high, and it is not well suited for use on burners. As a result, mainly tagines are made ceramic (see "Type"), designed specifically for cooking in the oven.