Dark mode
United Kingdom
Catalog   /   Tools & Gardening   /   Measuring tools   /   Multimeters

Comparison UNI-T UT612 vs UNI-T UT603

Add to comparison
UNI-T UT612
UNI-T UT603
UNI-T UT612UNI-T UT603
from £256.00 
Outdated Product
Compare prices 1
TOP sellers
Product typemultimetermultimeter
Typedigitaldigital
Measurement types
Measurements
resistance
capacity
inductance
resistance
capacity
inductance
Specs
Impedance minimum60 Ω200 Ω
Impedance max.20 MΩ20 MΩ
Display count199991999
Display value4 1/23 1/2
Features
Functions
 
 
 
autoranging
transistor test
diode test
continuity test mode
 
In box
battery
test probes
data cable
case (bag)
battery
test probes
 
 
General
Display backlight
Stand
Power sourcebattery / mainsbattery
Battery typePP3PP3
Dimensions193x96x47 mm172x83x38 mm
Weight374 g312 g
Added to E-Catalogoctober 2016october 2016
Price comparison

Impedance minimum

The upper limit of the lower sub-range in which the device can measure resistance.

The operating ranges of modern multimeters and other measuring instruments are usually divided into subranges. This is done for accuracy and convenience in measurements: the lower the subrange, the smaller the values it covers, the higher the accuracy of measurements at low resistance values. The minimum resistance describes exactly the lower range, designed for the weakest current values: for example, if the characteristics in this paragraph indicate 500 Ohms, this means that the lower subrange allows you to measure resistance from 0 to 500 Ohms.

When choosing for this indicator, you need to consider how important it is for you to accurately measure small resistances. At the same time, we note that the 500 Ohms given in the example are a fairly good indicator, indicating a fairly solid resistance measurement accuracy; in relatively inexpensive multimeters, this indicator can be 2.5 or even 10 kΩ, which ensures accuracy at best up to several tens of ohms.

Display count

The highest number that the DMM display can display (see "Type").

This indicator determines the range in which measurements can be taken without changing the settings. So, if the maximum number is 1999, then the measurement can be made in the range from 0 to 1999 of the selected units of measure — for example, from 0 to 1999 V if volts are selected, from 9 to 1999 mA (1.999 A) if milliamps are selected, etc. At the same time, 1999 and less for modern measuring instruments are considered a rather modest indicator, from 2000 to 3999 — average, 4000 – 9999 — not bad, and in the most advanced models this number exceeds 10000.

Note that the maximum displayed number is directly related to the display capacity — see below.

Display value

The digit capacity of the display installed in the digital instrument (see "Type").

Bit depth is the number of characters that can be displayed on the screen at the same time. The maximum displayed number directly depends on it (see above): for example, if the digit capacity is 4, then the device has a display for 4 full digits and is able to display a number up to 9999 inclusive. However, there are also more specific markings — with a fraction, for example, 3 1/2 or 4 3/4. This means that the largest (left) digit in this model is incomplete and the maximum digit that it can display is less than 9. Specifically, such marking is deciphered as follows: an integer means the number of full digits, the numerator of a fraction is the maximum number displayed in an incomplete digit, the denominator is the total number of values supported by an incomplete digit. Considering the above examples, 3 1/2 means a four-digit display with the maximum number in 1999: three full digits with a maximum value of 9, plus one partial digit with a maximum value of 1 and two options (1 and 0). Similarly, 4 3/4 corresponds to the maximum number 39999, with 4 options for values in the partial digit (0, 1, 2, 3).

Functions

- Checking the transistor. The ability to use the device to test transistors, more precisely, the presence of an appropriate mode in the design of the device. Technically, the performance of a transistor can be checked to a certain extent with an ordinary ohmmeter, for this there is an appropriate technique. Nevertheless, it is much easier to use a special mode - just connect the transistor to the multimeter in an appropriate way, and the device will automatically give data on the health or malfunction of the part (and sometimes additional characteristics for it). Most often, for such measurements, there is a special block on the case with a set of sockets for transistor outputs (with separate sets of sockets for pnp and npn types).

- Checking the diode. The presence of a special diode test mode in the design of the multimeter. The principle of a diode is to allow electric power to flow in only one direction; therefore, the serviceability of such a part itself can be determined without a special mode, for example, in the mode of a conventional ohmmeter, “continuity” of the circuit (see below), or in some other ways. However, special mode is often more convenient - both due to the simplicity of the procedure itself, and due to the fact that many devices in this mode are also able to measure the forward voltage drop across the diode (the lowest voltage required to pass power in the forward direction...).

— "Continuity" of the chain. Possibility of operation of the device in the "continuity" mode of the circuit - checking the presence of contact between two selected points. This mode differs from the usual check with an ohmmeter in that the presence of a contact is accompanied by an audible signal (hence the name). Such a signal saves the user from having to look at the scale of the device every time to clarify the presence or absence of contact, and this greatly speeds up the work and can be very useful if you need to “ring out” many sections at once.

- Meander generator. Ability to operate the device in the meander generation mode - a signal with a rectangular pulse shape and a duty cycle (see above) at level 2. The graph of such a signal looks like a set of rectangular peaks and dips of the same length. Meander is a regular signal format for modern digital technology; a signal of this type, generated by a multimeter, is used to test microcircuits, logic elements, amplifiers and other similar elements and circuits (for performance, signal flow, etc.).

Non-contact detection (NCV). Ability to detect live parts without direct contact with them. This method of detection is as safe as possible, besides, it allows you to find elements hidden from the eye: for example, using a device with this function, you can detect wiring in walls and determine places where you can drill without fear of damaging the wire.

True RMS. Ability to measure with the True RMS device - the true RMS value of the strength of the alternating power (see "Type of power"). The strength of the alternating power is determined not by the actual value (it will be different at each moment of time), and not by the maximum amplitude (after all, the maximum values also occur only at certain points in time), but by the root mean square. At the same time, in devices that do not support True RMS, this value is displayed as follows: the alternating power is rectified, its value is determined and multiplied by a factor of 1.1 (this is due to the mathematical features of the measurements). However, this method is only suitable for an ideal sinusoid; with a distorted signal, it gives a noticeable, and often even unacceptably high error. Distortions are found in almost any AC network, which can lead to serious measurement errors and subsequent problems (for example, to the selection of too “weak” automatic fuse). True RMS technology takes into account all these features: devices bearing this marking are able to accurately measure AC RMS power, regardless of how its shape corresponds to a perfect sine wave.

- Auto-selection of the measuring range. A function that allows the device to automatically select the optimal measurement range - so that the result is displayed on the screen as accurately as possible. This function is found only in digital instruments (see "Type"). Note that when using it, the user will still have to set certain basic settings - for example, “direct power, power, milliamps” or “alternating power, voltage, volts”. However, the device will perform a more precise setting itself: for example, to measure voltage in hundreds of volts, the range 0 - 1000 V can be used with an accuracy of 5 V, and when a 1.5 V battery is connected, the device will automatically switch to the range 0 - 12 V and display the result is already accurate to tenths of a volt. At the same time, the design may also provide for a completely manual measurement mode, with a range selection at the request of the user, however, the presence of such a mode will not hurt to clarify separately.

- Auto power off. The function of automatically switching off the Meter after a period of inactivity helps to conserve the charge of the used batteries.

In box

Items included in the scope of supply other than the instrument itself.

Battery. The power supply is necessary for the operation of the circuits of a digital device (see "Type"), and in analogue it is used for all measurements, except for voltage and current measurements. A battery as such a source is most often the most convenient (for more details, see "Power"); its presence in the kit eliminates the need to purchase a battery separately. At the same time, we note that the term "battery" in this case is very conditional — it can mean both a rechargeable element and a simple disposable battery. This point does not hurt to clarify before buying.

Measuring probes. Styli are the basic tool needed for most measurements; in fact, the only type of instrument that can do without probes is oscilloscopes(see "Device"). The presence of probes in the kit is convenient, first of all, because such accessories are optimally suited for a specific device — an important point, given that modern multimeters can vary in design and size of the sockets for the probes.

Data cable. Cable for connecting the device to a computer. The most popular connectors found in such cables are RS-232 (COM port) and USB, the specific option in each case should be specified separately. However, anyway, connecting to a computer provides many add...itional features — for example, automatic saving of measurement results or even comparison of measured parameters with reference ones; specific functionality depends on the model of the device and the software used.

— Case/case. Case for storing and carrying the device. Cases are usually called cases made of hard materials, cases are made of soft ones. Anyway, the case provides not only protection from dust, moisture, shock, etc., but also additional convenience — usually, it provides space not only for the device, but also for accessories for it (the same probes). At the same time, each type of case has its own advantages: the cases are durable and well protect the device from shocks, the cases are more compact both during use and during non-working hours. Of course, impromptu packaging can also be used for storage and transportation, but the complete case is at least more convenient, if not more reliable.

Display backlight

The presence of a backlight in the display of the device.

This function allows you to read the display regardless of lighting conditions — at dusk and even in total darkness. If there is not enough external light, just turn on the backlight, and the readings will be perfectly visible.

Power source

— Accumulator. Powered by an autonomous element; it may not necessarily be a rechargeable battery, many devices work just as well with disposable batteries, and some only use a branded built-in battery(for more details, see "Battery type"). Anyway, this method of power provides independence from outlets and the ability to easily move the device from place to place during measurements. As a result, it is this option that is the most popular today — especially since modern multimeters usually consume little energy, and batteries usually last for quite a long time.

Power grid. Connection from a conventional outlet. Such power is suitable for devices of any power, even the most “charged” and advanced; and the operating time from the outlet is limited only by the presence of voltage in the network (which is always present under normal conditions). On the other hand, plugging into a power outlet is less convenient than running from a battery — the power cord limits the ability to install and move the device, and in the absence of electrical outlets, the device becomes completely useless. As a result, this option is rarely used and only in those models that require high power supply — most often these are oscilloscopes and high-end stationary multimeters (see "Device").

— Battery / mains. Devices that allow both of the power options described above. Thus, you can choose the most convenient opti...on depending on the situation: if there are outlets, you can use the network, saving battery power, and if you need mobility, disconnect the device from the network and use the battery. However, such versatility significantly affects the price, despite the fact that it is not so often critical. Therefore, relatively few devices of this type are produced.
UNI-T UT612 often compared
UNI-T UT603 often compared