Range of flight
The distance that a quadcopter can travel in the air on one full battery charge. Simply put, this is the drone's range in kilometers. Note that smaller, lighter drones tend to have a more limited flight range compared to larger, more powerful models. In the latter, it can reach 30 km or more. Also, the maximum flight distance is often influenced by weather factors and the load carried by the copter.
Maximum flight time
Maximum flight time of a quadcopter on one full battery charge. This indicator is quite approximate, since it is most often indicated for ideal conditions - in real use, the flight time may be less than stated. However, by this indicator it is quite possible to evaluate the general capabilities of the copter and compare it with other models - a longer declared flight time in practice usually means higher autonomy.
Note that for modern copters, a flight time
of 20 minutes or more is considered a good indicator, and in the most “long-lasting” models it can exceed 40 minutes.
Horizontal speed
The highest speed that a quadcopter can achieve in horizontal flight. It is worth considering that in most cases this parameter is indicated for optimal operating conditions: a fully charged battery, low air temperature, minimum weight, etc. However, it is quite possible to rely on it both when choosing and when comparing different models of copters with each other.
Note that quadcopters were originally designed as stable and maneuverable aerial platforms, and not as high-speed vehicles. Therefore, you should specifically look for
a fast quadcopter only in cases where the ability to quickly move from place to place is critical (for example, when the device is supposed to be used for video recording of fast-moving objects over large areas).
Ascent / descent speed
The speed at which the quadcopter rises up in the air or descends to the ground. Recreational, photo and video models tend to have more moderate climb/descent speeds, while professional or racing drones can rise and fall much faster. This indicator can be used to evaluate how quickly the copter can rise to a height for filming or, if necessary, avoid obstacles, and a high descent rate will be useful if the drone needs to be returned to the ground quickly and safely.
Wind impedance
The ability of a quadcopter to maintain and maintain stable flight parameters in windy weather. In this column, it is customary to indicate the wind force in meters per second, which ensures trouble-free takeoff and landing of the drone within the permissible wind speed. Directly in flight, copters can overcome the resistance of even faster winds. But takeoffs and landings with wind strength above the designated level are fraught with unpredictable movements of the drone, loss of control and an increased risk of emergency situations.
Range
The range of the drone is the maximum distance from the control device at which a stable connection is maintained and the device remains controlled. For models that allow operation both from the remote control and from a smartphone (see "Control"), this item indicates the maximum value — usually achieved when using the remote control.
When choosing according to this indicator, note that the range is indicated for perfect conditions — within line of sight, without obstacles in the signal path and interference on the air. In reality, the control range may be somewhat lower; and when using a smartphone, it will also depend on the characteristics of a particular gadget. As for specific figures, they can vary from several tens of metres in low-cost models to
5 km or more in high-end equipment. At the same time, it should be said that the greater the range of communication, the higher its reliability in general, the better the control works with an abundance of interference and obstacles. Therefore, a powerful transmitter can be useful not only for long distances, but also for difficult conditions.
Screw diameter
The diameter of each individual quadcopter/multicopter propeller (it is usually the same for all propellers). In general, this indicator is of secondary importance: it is selected by the manufacturer in such a way as to provide features corresponding to the class of the machine. We only note that the noise level may depend on the size of the propellers: all other things being equal (the number of propellers, the number of blades, the weight of the apparatus, etc.), a propeller of a smaller diameter must rotate faster to provide the necessary thrust, and at high speeds the engines also run louder.
USB charging
The ability to charge the quadcopter battery from a standard USB port. This charging method is convenient primarily due to the prevalence of USB: such ports are available in the vast majority of modern computers and laptops, corresponding adapters for 230 V sockets and car cigarette lighters are available, and portable power banks use USB as standard connectors. Thus,
models with USB charging have very extensive connectivity options and are not limited to the "native" charger. And although the power of such charging is relatively low, however, for most copters, even this is quite enough.
Dimensions
General dimensions of the device. A fairly obvious parameter; we only note that for models with a folding structure (see above), in this paragraph, the dimensions in the working (unfolded) position are given, and the dimensions in the folded form are specified separately.