United Kingdom
Catalog   /   Computing   /   Components   /   Computer Cooling

Comparison Thermaltake Riing 12 LED Blue vs Deepcool ICE BLADE 100

Add to comparison
Thermaltake Riing 12 LED Blue
Deepcool ICE BLADE 100
Thermaltake Riing 12 LED BlueDeepcool ICE BLADE 100
Compare prices 1
from £14.41 
Outdated Product
TOP sellers
Main specs
Featuresfor casefor CPU
Product typefanair cooler
Fan
Number of fans11
Fan size120 mm92 mm
Fan thickness25 mm
Bearinghydrodynamichydrodynamic
Max. RPM
1500 rpm /1000 L.N.C./
2200 rpm
Speed controllerauto (PWM)is absent
Max. air flow40.6 CFM43 CFM
Static pressure2.01 mm H2O
MTBF40 K hours
Max. TDP100 W
Air flow directionsideways (dispersion)
replaceable
Lighting
Lighting colourblue
Noise level
25 dB /18.7 L.N.C./
32 dB
Radiator
Heat pipes1
Heatpipe contactstraight
Heatsink materialaluminium/copper
Plate materialaluminium
Socket
 
 
 
 
 
 
 
AMD AM2/AM3/FM1/FM2
AMD AM4
Intel 775
Intel 1150
Intel 1155/1156
Intel 1151 / 1151 v2
Intel 1200
General
Power source4-pin3-pin
Mount typesilicone mountslatches
Dimensions120x120x25 mm103x70x135 mm
Height135 mm
Weight159 g309 g
Added to E-Catalogaugust 2015october 2013

Features

The component of a computer system for which the cooling system is designed.

Nowadays, two types of Cooling system are most widely used — for CPU and for the case. Other solutions are also being produced — for video cards, RAM, hard drives, etc.; however, in most cases, such computer components either do not require special cooling systems at all (hard drives are a typical example), or are equipped with them initially (video cards).

COs for CPUs most often have the format of an active cooler or a water cooling system (see "Type"). In this case, in both cases, the design usually provides for a substrate — a contact plate adjacent directly to the processor. Heat from the substrate is transferred to the cooling unit using heat pipes (in coolers) or a circuit with a circulating coolant (in liquid systems). Heatsinks are also produced for CPUs — they are designed mainly for low-power CPUs with low heat dissipation; when installing such a component, special attention should be paid to the quality of the cooling of the case.

In turn, COs for cases are made exclusively in the form of fans, since their task is not to cool a strictly defined component, but to remove hot air from the entire volume of the system unit.

Product type

Fan. Classic fan — a motor with blades that provides air flow; it also includes multi-fan kits. Anyway, you should not confuse such devices with coolers (see below) — fans do not have heatsinks. Almost all solutions of this type are designed for enclosures (see "Intended use"), only a few models are designed for "blowing" hard drives or chipsets.

Radiator. Thermally conductive material construction with a special ribbed shape. This shape provides a large area of contact with air, as a result — good heat transfer. Radiators do not consume energy and operate absolutely silently, but they are not very efficient. Therefore, they are extremely rare in their pure form, and such models are intended either for low-power PC components with low heat dissipation (energy-efficient processors, hard drives, etc.), or for assembling an active cooler (see below) from a separately purchased fan and radiator (this option is found among solutions for video cards).

Active cooler. A device in the form of a radiator with a fan installed on it; however, in many models, the heatsink does not directly contact the cooled component, but is connected to it using heat pipes, while air is blown sideways (the so-called tower layout, especially popular in systems for the CPU; for more details, see "Blowing the air flow") . Anyway, such designs are, on the one hand, relatively simp...le and inexpensive, and, on the other hand, quite effective, which makes them an extremely popular type of Cooling system. In particular, it is in this format that most solutions for CPUs are produced (see "Intended use"), and in general coolers can be used for almost any component of the system, except for the case.

Water cooling. Water cooling systems consist of three main parts: a water block in direct contact with the cooled component (usually a processor), an external cooler, and a pump (separate or built into the cooler). These components are connected by hoses through which water (or other similar coolant) circulates — it provides heat transfer. And the cooling block is usually a cooler — a system of fans and heatsinks that dissipates heat energy into the surrounding air. Water systems are noticeably more efficient than active coolers (see above), they are suitable even for very powerful and "hot" CPUs, which traditional coolers can hardly cope with. On the other hand, this type of cooling is quite bulky and difficult to install, and it is not cheap.

— A set of LSS. Kit for self-assembly of liquid (water) cooling system. The difference between such solutions and conventional water cooling (see above) lies in the fact that in this case the entire system is supplied as a set of parts, from which the user must assemble the finished coolant himself (whereas in traditional water systems, the matter is usually limited to connecting hoses and filling coolant). Such a format significantly expands the user's options in terms of installation: you can independently choose individual layout nuances, replace some regular parts, supplement the design with third-party elements, etc. On the other hand, the installation itself turns out to be much more complex than traditional water systems. Therefore, very few LSS kits are produced, and they are designed mainly for enthusiast modders who like to experiment with the design and construction of their PCs.

— backplate. A solid metal plate used as a fastener for the cooling system. Serves to prevent the motherboard or video card from bending when deploying a heat dissipation system, and also provides passive cooling for the rear side of those modules with which it is adjacent.

- Water block VRM. A water block that provides efficient cooling of the elements of the VRM (Voltage Regulator Module) CPU power subsystem.

- CPU waterblock. Heat exchanger made of copper or nickel, designed to remove heat from the CPU through the coolant. Used in computer water cooling systems. Most often, processor water blocks are supplied with mounts for certain processor platforms.

- GPU water block. Liquid cooling blocks for the most efficient heat removal from the video card. Similar solutions are produced for a specific group of video cards on a single GPU. GPU water blocks consist of two main parts: the upper one, where a copper alloy heat sink is located, a plastic overlay with liquid channels and a casing to stiffen the structure, as well as a metal plate at the bottom of the block on the reverse side of the printed circuit board.

— A set of fasteners. A set of fasteners for mounting cooling systems on computer motherboard elements. Issued for specific socket versions.

Fan size

The diameter of the fan(s) used in the cooling system.

In general, larger fans are considered more advanced than smaller ones: they allow you to create a powerful air flow at a relatively low speed and low noise level. On the other hand, a large diameter means large dimensions, weight and price. As for specific figures, 40 mm and 60 mm models are considered miniature, 80 mm and 92 mm are medium, 120 mm and 135 / 140 mm are large, and even 200 mm fans are found in the most powerful case systems.

Fan thickness

This parameter must be considered in the context of whether the fan will fit into the computer case. Standard case fans are available in the order of 25 mm in thickness. Low-profile coolers with a thickness of about 15 mm are designed for small-sized cases, where saving space is extremely important. Fans of large thickness (30-40 mm) boast high cooling efficiency due to the increased impeller dimensions. However, they are noisier than standard models at the same speed and do not always fit into the case normally, sometimes touching other components.

Max. RPM

The highest speed at which the cooling system fan is capable of operating; for models without a speed controller (see below), this item indicates the nominal rotation speed. In the "slowest" modern fans, the maximum speed does not exceed 1000 rpm, in the "fastest" it can be up to 2500 rpm and even more.

Note that this parameter is closely related to the fan diameter (see above): the smaller the diameter, the higher the speed must be to achieve the desired airflow values. In this case, the rotation speed directly affects the level of noise and vibration. Therefore, it is believed that the required volume of air is best provided by large and relatively "slow" fans; and it makes sense to use "fast" small models where compactness is crucial. If we compare the speed of models of the same size, then higher speeds have a positive effect on performance, but increase not only the noise level, but also the price and power consumption.

Speed controller

Auto (PWM). A type of automatic regulator used in processor cooling systems. The principle of this adjustment is that the automation monitors the current load on the CPU and adjusts the fan operation mode to it. Thus, the cooling system works "in advance": it actually prevents the temperature rise, and does not eliminate it (unlike the thermostat described below). The disadvantages of such automation are the high cost and additional compatibility requirements: the PWM function must be supported by the motherboard, and the fan must be powered through a 4-pin connector (see "Power").

— Manual. Manual regulator that allows you to set the rotation speed at the request of the user. Its main advantages are both the possibility of arbitrary adjustment and reliability: automation does not always respond optimally, and in performant systems it is sometimes better for the user to take control into his own hands. On the other hand, manual control is more expensive and also more difficult to use — it requires the user to pay more attention to the state of the system, and if not attentive, the likelihood of overheating increases significantly.

— Manual / auto. A combination of the two systems described above: the main control is carried out by PWM, and the manual regulator serves to limit the maximum rotational speed. A fairly convenient and advanced option that expands the possibilities of auto-adjustment and at the same time doe...s not require constant temperature control, as with a purely manual setting. However such functionality is expensive.

— Adapter (resistor). In this case, the speed is adjusted by reducing the voltage supplied to the fan. To do this, it is connected to the power supply through a resistor adapter. This is a kind of alternative to manual adjustment: adapters are inexpensive. On the other hand, they are much less convenient: the only way to change the rotation speed with such an adjustment is to actually change the adapter, and for this you have to turn off the system and climb into the case.

— Thermostat. Automatic speed control according to data from a sensor that measures the temperature of the cooled component: when the temperature rises, the intensity of work also increases, and vice versa. Such systems are simpler than the PWMs described above, moreover, they can be used for almost any system component, not only for CPU. On the other hand, they have more inertia and reaction time: if the PWM prevents heating in advance, then the thermostat is triggered by an increase in temperature that has already happened.

Max. air flow

The maximum airflow that a cooling fan can create; measured in CFM — cubic feet per minute.

The higher the CFM number, the more efficient the fan. On the other hand, high performance requires either a large diameter (which affects the size and cost) or high speed (which increases the noise and vibration levels). Therefore, when choosing, it makes sense not to chase the maximum air flow, but to use special formulas that allow you to calculate the required number of CFM depending on the type and power of the cooled component and other parameters. Such formulas can be found in special sources. As for specific numbers, in the most modest systems, the performance does not exceed 30 CFM, and in the most powerful systems it can be up to 80 CFM and even more.

It is also worth considering that the actual value of the air flow at the highest speed is usually lower than the claimed maximum; see Static Pressure for details.

Static pressure

The maximum static air pressure generated by the fan during operation.

This parameter is measured as follows: if the fan is installed on a blind pipe, from which there is no air outlet, and turned on for blowing, then the pressure reached in the pipe will correspond to the static one. In fact, this parameter determines the overall efficiency of the fan: the higher the static pressure (ceteris paribus), the easier it is for the fan to “push” the required amount of air through a space with high resistance, for example, through narrow slots of a radiator or through a case full of components.

Also, this parameter is used for some specific calculations, however, these calculations are quite complex and, usually, are not necessary for an ordinary user — they are associated with nuances that are relevant mainly for computer enthusiasts. You can read more about this in special sources.

MTBF

The total time that a cooling fan is guaranteed to run before it fails. Note that when this time is exhausted, the device will not necessarily break — many modern fans have a significant margin of safety and are able to work for some more period. At the same time, it is worth evaluating the overall durability of the cooling system according to this parameter.
Thermaltake Riing 12 LED Blue often compared
Deepcool ICE BLADE 100 often compared