Dark mode
United Kingdom
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   AV Receivers

Comparison Onkyo TX-NR575 vs Onkyo TX-NR474

Add to comparison
Onkyo TX-NR575
Onkyo TX-NR474
Onkyo TX-NR575Onkyo TX-NR474
from £349.99 
Outdated Product
from $454.00
Outdated Product
User reviews
0
0
0
1
TOP sellers
Main
DAA Dynamic Sound Amplification System. Extensive wireless connectivity.
Device typeAV ReceiverAV Receiver
CPU
DAC frequency384 kHz384 kHz
Audio DAC32 bit32 bit
Auto sound calibration
Auto level
Surround sound in headphones
Ultra HD4K4K
UpscalingUltra HD (4K)
HDRHDR10, Dolby VisionHDR10, Dolby Vision
3D
Multi Zone
Tech specs
Number of channels7.25.1
Power per channel135 W135 W
Signal to noise ratio106 dB106 dB
Acceptable acoustic impedance4 Ohm4 Ohm
Frequency range10 – 100000 Hz10 – 100000 Hz
Bi/Tri-amping
Media player and tuner
Tuner and playback
AM/FM radio
USB drive
network streaming audio
internet radio
AM/FM radio
USB drive
network streaming audio
internet radio
Playable formatsMP3, WMA, WMA Lossless, FLAC, WAV, Ogg Vorbis, AAC, LPCMMP3, WMA, WMA Lossless, FLAC, WAV, Ogg Vorbis, AAC, LPCM
Communications (interface)
Interfaces
AirPlay
Chromecast
Wi-Fi
Bluetooth
LAN
 
Remote control negotiation
AirPlay
Chromecast
Wi-Fi
Bluetooth
LAN
DLNA
Remote control negotiation
Decoder support
Decoders
Dolby Atmos
Dolby Digital
Dolby Digital Plus
Dolby TrueHD
DTS
DTS Express
DTS 96/24
DTS-HD High Resolution Audio
DTS-HD Master Audio
DTS ES Matrix 6.1
DTS ES Discrete 6.1
DTS Neural:X
DTS X
Dolby Atmos
Dolby Digital
 
Dolby TrueHD
DTS
 
 
 
DTS-HD Master Audio
 
 
DTS Neural:X
DTS X
Inputs
RCA3 pairs3 pairs
Coaxial S/P-DIF1 шт1 шт
Optical2 шт2 шт
HDMI4 шт4 шт
HDMI versionv 2.1v 2.1
Composite2 шт2 шт
Phono
Outputs
RCA1 pairs
HDMI1 шт1 шт
On headphones6.35 mm (Jack)6.35 mm (Jack)
Front panel
Headphone output
Linear
General
Power consumption480 W400 W
Standby consumption0.15 W0.2 W
Smartphone control
Dimensions (WxDxH)435x329x174 mm435x328x160 mm
Weight9 kg8.6 kg
Color
Added to E-Catalogmarch 2017march 2017

Upscaling

The ability to increase the resolution of the video signal processed by the receiver - if the original video resolution is lower. Depending on the capabilities of the receiver, in particular its HDMI ports, upscaling to Ultra HD 4K and upscaling to Ultra HD 8K may occur.

The principle of upscaling is that a relatively low-resolution video is supplemented with the required number of pixels using special algorithms. Due to this, when playing such a video, the quality of the “picture” is noticeably higher than without upscaling (although somewhat lower than that of content originally recorded in UltraHD). It makes sense to specifically look for a receiver with this function if you plan to use it with a 4K or 8K screen.

Multi Zone

The possibility of using the receiver for simultaneous transmission of signals from different sources to screens and speakers located in different places (zones). For example, in a large house, you can simultaneously stream a movie from a Blu-ray player to a screen in a large room, a TV show to a TV in the kitchen, and a radio programme to speakers in a library. Another option for using Multi-Zone is entertainment centers with several rooms of different types (for example, a cinema hall, a roller skating rink and a cafe).

Number of channels

The maximum number of channels that the receiver can output to external speakers. This parameter is specified for all types (see above): even AV processors that do not have an amplifier as such are often equipped with a very extensive set of audio processing tools (and this set is sometimes even wider than in models with amplifiers).

The most popular options by the number of channels today are as follows:

— 2.1. The simplest option found in modern AV receivers is the classic two-channel stereo sound, supplemented by a third channel for a subwoofer. It is worth noting here that the "volume" of such a sound is very limited: it allows you to simulate the shift of the sound source to the left or right, but does not cover the space on the sides and behind the listener. Receivers of this kind are usually entry-level devices.

— 3.1. Such a system is usually the 2.1 described above, supplemented by a third front speaker — in the centre. This provides a more authentic sound from the front. And for some 3.1 systems, design tricks are claimed that allow them to be used for surround sound, similar to 5.1. Rear channels in such systems are simulated by reflecting sound from the walls behind the user. Of course, the sound accuracy is noticeably lower than that of a full-fledged 5.1, but this option may be optimal in tight spaces where there is no space for a full set of six-channel acoustics.

5.1. The most popular surround sound format that can provide the effect of "environment". 5 main channels include a centre, two front (left-right) and two rear (similarly), a unit indicates a separate low-frequency channel for a subwoofer.

— 5.2. Sound format similar to 5.1 above, except for two channels for subwoofers instead of one. This improves the quality of the bass sound, which can be useful for films with a lot of special effects, live performance recordings, etc.

— 6.1. A sound format with an expanded number of main channels relative to the classic 5.1. The sixth main channel in this format is usually the centre back — this increases the accuracy of the sound transmission in the back of the stage.

— 6.2. 6.1 version of the format described above, supplemented by a second subwoofer; this improves the quality of low frequency transmission and allows you to cover a larger area.

— 7.1. With this sound format, five main channels (similar to the 5.1 system described above) are supplemented with two more. There are a lot of options for installing speakers for these channels — for example, these can be additional speakers above two front or two rear speakers, two separate side speakers, an additional “centre” pair on the rear channel, etc. Anyway, an increase in the number of channels makes it possible to achieve a more accurate transmission of “surround” sound compared to 5.1, however, much less content has been released for such systems.

— 7.2. A variation on the 7.1 format (see above) that allows the use of two separate subwoofers; this increases the accuracy of the transmission of low frequencies and expands the possibilities for their adjustment.

— 8.4. A specific variant found in single models of AV receivers. It is not so much a generally accepted sound format as an illustration of advanced configuration options: up to 8 main speakers and up to 4 subwoofers can be connected to the device, which gives very extensive fine-tuning options (however, such options are not cheap).

— 9.1. One of the most advanced surround sound formats today: it includes 5 classic main channels (similar to a 5.1 system) and 4 additional ones, the location of which can be different — for example, two side speakers and two upper ones above the left and right front, or even 4 speakers, directed towards the ceiling. The 9.1 format allows you to achieve very high fidelity of multi-channel audio transmission, but it is expensive, difficult to set up, and very little content has been released for such systems.

— 9.2. Modification of the above 9.1 format, supplemented by a second subwoofer for more accurate and high-quality reproduction of low-frequency sound.

— 11.1. Further, after 9.1, expansion and improvement of the idea of multi-channel sound. Usually in 11.1 systems, the five "classic" main channels (see 5.1) are supplemented with six more in the following way: two speakers to the left and right of the centre (in addition to the left and right front), two height speakers above the main front and two more — above main rear. This significantly increases the accuracy of surround sound transmission and adds the ability to shift it not only horizontally, but also vertically. However, the price and complexity of setting up such systems is appropriate, so they are designed more for the professional sphere (for example, cinema halls of entertainment centers) than for home use.

— 11.2. Systems almost identical to those described above 11.1, but supplemented by a second subwoofer. The latter is useful not only for reliability, but also for covering a vast area.

— 12.4. A top-of-the-line AV receiver option that is designed to handle all existing surround sound formats (including "true" 3D sound) and offers extremely wide customization options (albeit at an appropriate price).

— 13.2. Another format typical for luxury AV receivers and similar to 12.4 described above (with the exception of differences in the number of channels, which are not critical in this case).

— 15.1. A very rare and expensive option, designed for the use of mainly advanced acoustic systems — in particular, the halls of small cinemas.

Note that this paragraph indicates the most advanced sound format that the receiver is capable of working with; the general set also includes simpler options. For example, 7.1 systems usually handle 5.1 without any problems, not to mention stereo.

Bi/Tri-amping

The ability of the receiver to work in Bi-amping and/or Tri-amping mode.

The basic principle of both of these modes is that the audio signal is divided into several frequency bands (LF and HF for Bi-amping, in the case of Tri-amping, mid frequencies are separated separately), and each band is processed by its own amplifier and output to its own specialized set of speakers. . In this way, a noticeable improvement in sound quality can be achieved. However, note that the specific implementation of this function in AV receivers may be different. The simplest option involves two or three built-in power amplifiers, each of which outputs the entire audio range to its own set of connectors. To such a device, you need to connect an external crossover (frequency filter) or speakers with built-in filters for each frequency band. More advanced receivers may have their own built-in crossovers, in which case only part of the frequency range is output to each amplifier with a set of connectors; this eliminates the need for external frequency filters. However, anyway, to use Bi/Tri-amping, you will need speakers that support this connection format.

Interfaces

- AirPlay. Technology for transmitting multimedia data via a wireless connection ( Wi-Fi). Developed by Apple, it is intended mainly for broadcasting content from various Apple devices (primarily portable gadgets) to compatible external devices. Allows you to transfer audio files (in audio streaming mode, see “Tuner and playback” for more details), as well as images, text data and even video. The presence of AirPlay in the receiver will allow you to connect Apple equipment with support for this technology to it for direct playback, as well as display information about files on an external screen (for example, a TV) - song name, artist name, etc.

- AirPlay 2. The second version of the AirPlay technology described above, released in 2018. One of the main innovations introduced in this update was support for the multi-room format - the ability to simultaneously broadcast several separate audio signals to different compatible devices installed in different locations. Thus, you can, for example, turn on the next episode of your favorite series from your iPhone on the TV in the living room, and relaxing music from your iPod in the kitchen, etc. In addition, AirPlay 2 received a number of other improvements - improved buffering, the ability to stream to stereo acoustics, as well as support for voice control via Siri.

- Chromecast.... Original name: Google Cast. Technology for broadcasting content to external devices, developed by Google. Allows you to transmit video and audio from a PC or mobile device to the AV receiver; broadcasting is usually carried out via Wi-Fi, while the receiver and the signal source must be on the same Wi-Fi network (with the exception of Chromecast media players). Chromecast technology supports two modes - actual broadcasting through special applications (available for Windows, macOS, Android and iOS) and “mirroring” content opened in the Google Chrome browser on an external screen.

- Wi-Fi. A wireless interface used primarily for building computer networks. Accordingly, AV receivers may need its presence primarily to implement network functions - streaming audio, Internet radio (see “Tuner and playback”), AirPlay (see above), DLNA (see below). Connecting to computer networks can also be done through a wired LAN interface(see below), but Wi-Fi is more convenient due to the absence of wires and the ability to work through obstacles (including walls) at a distance of several tens of meters. In addition, in some models, this technology can also be used to communicate directly with other devices - for example, to use a smartphone or tablet as a remote control, or to broadcast live video using Miracast technology or another similar format.

Bluetooth. Direct wireless communication technology between various electronic devices; operates at a range of about 10 m, although some specific operating formats provide a longer range. Technically, it can be used for different purposes, depending on the protocols supported by a particular device; In AV receivers, two protocols are most often found - A2DP for wireless broadcasting of audio signals and AVRCP for remote control. In the first case, we are usually talking about transmitting a signal from an external device (smartphone, laptop, etc.) to the receiver; theoretically, the opposite option is also possible - broadcasting sound to Bluetooth headphones or acoustics, however, for a number of reasons, this format of operation is almost never found in AV receivers. AVRCP, in turn, allows you to use an external gadget (for example, the same smartphone) as a remote control.

- LAN. A standard interface for wired connection of various equipment (including AV receivers) to computer networks, incl. to access the Internet. Due to the presence of a wire, it is less convenient to connect than the Wi-Fi described above. On the other hand, a LAN connection wins in terms of connection reliability and actual data transfer speed - especially if there are many wireless devices on the network and Wi-Fi channels are busy (which is often the case, since Wi-Fi modules are very popular in modern electronics ). Therefore, for working with large volumes of data - for example, watching high-definition video via DLNA (see below) - LAN is better suited.

— RS-232. A wired interface that originally appeared in computer technology. In AV receivers, it can be called a service connector: content is not transmitted through this connector, but through it you can connect the device to a computer and remotely change settings, as well as update the firmware.

— MHL. High-speed wired interface for transmitting multimedia data (video and audio) from mobile devices to external screens. The bandwidth allows you to work with high or even ultra-high resolution images, as well as multi-channel audio. Also, when connected, the gadget can be charged. In mobile devices, the MHL signal is output via a standard microUSB port; and the role of the input in AV receivers (and other stationary equipment) is played by the HDMI connector (see below) - however, not every connector, but only one that is initially compatible with MHL and has the appropriate marking. Adapters are available for connecting to regular HDMI, but additional functions (like charging) may not be available with this connection.

- DLNA. A technology used to connect various electronic devices into a single digital network with the ability to directly exchange content. Devices for which support for this standard is declared are able to communicate effectively regardless of the manufacturer. An AV receiver with DLNA can, for example, play a movie directly from the hard drive of a computer in the next room, or transfer photos from a smartphone to the TV. Connecting to the Network can be done either wired (LAN) or wirelessly (Wi-Fi, see above).

- Roon Tested. Roon Tested accreditation means the AV receiver is compatible with the popular audiophile music streaming platform Roon. Certified models have undergone a series of tests and meet the quality standards required to operate Roon flawlessly. This ensures convenient management and organization of content within the platform.

— Coordination of Remote control. A function that allows you to connect the AV receiver to another device (for example, a Blu-ray player or external amplifier) and control both devices with one remote control. When purchasing equipment with such a function, it is necessary to clarify compatibility - as a rule, only equipment from one manufacturer can work in such a “bundle”, and even in such cases, their own nuances are possible upon agreement.

— Voice assistant. Receiver support for voice assistant. The most popular assistants these days are:
  • Google Assistant
  • Apple Siri
  • Amazon Alexa
However, other solutions may also emerge. In any case, it is worth noting that we are not talking about an assistant built into the receiver itself, but about compatibility with external devices that have this function (for example, a smartphone or tablet). But even such compatibility allows you to give commands to the receiver by voice - this is often more convenient than more traditional control methods. The specific set of supported commands and languages may vary depending on the voice assistant and its specific version.

Decoders

A decoder can be broadly described as a standard in which digital audio (often multi-channel) is recorded. For normal playback of such sound, it is necessary that the corresponding decoder is supported by the device. The first signs of multi-channel decoding were Dolby Digital and DTS, gradually improving and introducing new features. The final stage for 2020 is Dolby Atmos and DTS X decoders. And the intermediate ones were Dolby TrueHD, Dolby Pro Logic II, DTS-HD, DTS ES, DTS Neural: X, DTS Neo (6, X).

Dolby Atmos. A decoder that does not use a rigid distribution of sound across channels, but the processing of audio objects, due to which it can be used with almost any number of channels on a reproducing system — the sound will be divided between channels so that each audio object is heard as close as possible to its proper place. When using Dolby Atmos, in-ceiling speakers (or speakers facing the ceiling) are highly desirable. However, in extreme cases, you can do without them.

— DTS X . An analogue of the Dolby Atmos described above, when the sound is distributed not through individual channels, but through audio objects. The...digital signal contains information about where (according to the director's intention) the object audible to the user should be and how it should move, and the processor of the reproducing device processes this information and determines exactly how the sound should be distributed over the available channels in order to achieve the required localization. Thanks to this, DTS X is not tied to a specific number of audio channels — there can be as many as you like, the system will automatically divide the sound into them, achieving the desired sound. Also note that this decoder allows you to separately adjust the volume of dialogues.

IMAX Enhanced. The IMAX Enhanced Mark of Conformity is awarded to equipment that meets the audio certification requirements of IMAX Corporation. Combined with DTS audio technology to deliver signature IMAX theater-like sound in the home. The most accurate reproduction of such audio is possible in systems with a large number of channels (5.1 or more). Note that for a fully immersive experience, IMAX Enhanced certification must also apply to video equipment for playing content (TV, projector, etc.).

Phono

The presence of the Phono input in the design of the AV receiver.

This type of input is used to connect turntables. Despite the widespread popularity of digital media, classic vinyl records do not leave the scene. And it's not just a matter of nostalgia: many audiophiles believe that it is the record that provides the most authentic and complete sound, which is why turntables for vinyl are quite often found in high-end audio systems. However, the sound from such a player must be passed through a phono stage, otherwise there can be no question of any quality. For these purposes, in high-end equipment, including AV receivers, the Phono input is provided: the signal received at this input is fed to the built-in phono stage. This allows you to connect turntables directly, without additional external equipment.

Note that phono stages can be designed for different types of pickups — MM or MC; therefore, before connecting, check to see if the Phono input is compatible with your turntable's cartridge. However, many receivers with this function are equipped with a universal MM/MC phono stage.

RCA

The number of analogue stereo RCA outputs provided in the design of the AV receiver.

By itself, the RCA connector (colloquially — "tulip") can be used in different interfaces. However, in this particular case, we are talking about a linear audio output that is responsible for an analogue audio signal. RCA is the most popular connector used in modern audio equipment for such outputs. In this case, we can talk about both standard outputs for connecting speakers, and about REC connectors designed to connect a recording device to the receiver and differ in a constant signal level. (however, there is rarely more than one such output). In addition, preamplifier outputs are also taken into account here.

Note that connectors of this type are usually counted in pairs; in other words, one output consists of two RCA connectors. This is due to the fact that in this case only one channel of analogue audio can be transmitted over one wire; accordingly, two RCA jacks are required for stereo transmission.

Several RCA outputs allow you to connect several sets of acoustics to the receiver at the same time — for example, to broadcast sound in several rooms at once or to record sound in parallel with listening to it.

Power consumption

The maximum power consumed by the receiver during normal operation. The power consumption of the device depends on this parameter, so if saving energy is crucial for you, you should pay attention to it. Also, information on power consumption is useful if you have doubts about the claimed characteristics of the built-in amplifier: if the total power of all channels is greater than the total power consumption of the receiver, then there is an error somewhere in the numbers.
Onkyo TX-NR575 often compared
Onkyo TX-NR474 often compared