Dark mode
United Kingdom
Catalog   /   Home & Renovation   /   Cookware & Cutlery   /   Kitchen Cookware   /   Pans

Comparison Con Brio CB-2416 24 cm vs Berlinger Haus Changing Flameguard BH-1296 24 cm

Add to comparison
Con Brio CB-2416 24 cm
Berlinger Haus Changing Flameguard BH-1296 24 cm
Con Brio CB-2416 24 cmBerlinger Haus Changing Flameguard BH-1296 24 cm
Outdated Product
from $14.28 up to $14.29
Outdated Product
TOP sellers
Typeclassicclassic
Specs
Size
24 cm
24 cm
Wall height5.5 cm5 cm
Pan materialcast aluminiumforged aluminium
Handle materialsiliconebakelite
Non-stick coatingstone (marble, granite)stone (marble, granite)
Features
induction bottom
dishwasher compatible
induction bottom
dishwasher compatible
Country of originUkraineHungary
Added to E-Catalogmay 2017october 2016

Wall height

The height of the walls is selected by the manufacturer depending on the type of pan (see above) and its size, however, similar products may vary in the height of the sides. In such cases, it is worth considering the features of the intended application. So, high sides are convenient for stewing, preparing sauces and other types of cooking that involve a large amount of liquid; in addition, they allow you to fit more content. On the other hand, deep pans are more expensive and heavier. The shallow depth, in turn, makes it easy to flip pancakes, omelettes and other similar dishes, but reduces capacity.

Pan material

The material from which the pan is made.

Aluminium is the most popular nowadays, it is available on the market in several versions — stamped, cast, forged, plus all three of these varieties can be anodized. Noticeably fewer frying pans are made of cast iron and steel, but a lot of such products are also produced. But copper and ceramics are very rare, even exotic options nowadays.

Here is a more detailed description of each of the mentioned materials:

— Cast iron. A classic material, thanks to a number of characteristics, has not lost popularity nowadays. Its main feature is the combination of high heat capacity and relatively low thermal conductivity. This means that the cast-iron pan heats up slowly, but evenly, and cools just as slowly; while cast iron easily tolerates high temperatures. This property makes cast iron pans very versatile and suitable for both "slow" and "fast" fires. This material is usually not coated with a non-stick coating, however, subject to certain care rules, cast iron itself can acquire similar properties — to the point that some dishes can not be stirred at all when cooking on cast iron. Frying pans made of this material are very weighty, but many...consider this an advantage — a heavy pan is as stable as possible. Of the obvious disadvantages, one can name the tendency to corrosion (which requires careful observance of the rules of care), as well as relative fragility — cast iron can crack from an impact that steel or aluminium would have completely endured. Also, food cannot be stored in such dishes — its taste deteriorates.

— Steel. Stainless steel is considered one of the safest materials: it is chemically inert and does not tend to interact with food and other substances. Also, this material is durable, resistant to impacts, weighs significantly less than cast iron and at the same time massive enough to ensure stability. On the other hand, steel also has a number of disadvantages. So, due to the high thermal conductivity, it heats up unevenly, and it does not tolerate high temperatures well — characteristic iridescent stains of the “tint colour” appear. Food in such pans tends to burn — in the end, you either have to put up with this, or look for models with a non-stick coating (and here safety is already determined by the properties of this coating, see below). Washing steel utensils is also quite difficult — abrasive detergents scratch the coating and spoil the appearance, and without them it can take a lot of time and effort.

— Aluminium. The main advantage of aluminium is its low price and, accordingly, availability. Also, it is characterized by good strength, high thermal conductivity and, accordingly, fast heating, and such pans cool down for quite a long time. However, this material also has a number of significant drawbacks. For example, food in an aluminium pan tends to burn, and washing it is associated with a number of difficulties — it is undesirable to use acids and alkalis, the coating is easily scratched. In addition, thin pans are very sensitive to overheating and can warp; this is especially critical on electric stoves, where it is quite difficult to control the temperature, and a flat bottom of the dishes is especially important. Light weight can be called both an advantage and a disadvantage of aluminium: it reduces the stability of the pan, but also makes it easier to work with it. As a result of all of the above, this material is used mainly in inexpensive dishes. Aluminium frying pans can be produced using different technologies, they are described in more detail below; here we note that if the characteristics of the pan indicate simply “aluminium”, then most likely we are talking about a stamped product.

— Extruded aluminium. Stamping is the simplest technology for the production of aluminium pans, it is inexpensive. However, the quality of such products, usually, does not shine: the thermal conductivity is relatively low, and the sensitivity to overheating and the tendency to deformation are high. However, these moments can be partly offset by an increase in thickness or the use of additional inserts; the most advanced of the "thick" aluminium frying pans can be comparable in performance to cast products (see below).

— Forged aluminium. Forging technology in the case of frying pans is good in that it provides the fibrous structure of the metal. This has a positive effect on strength and weight and provides quite decent performance (in particular, thermal conductivity) even with a relatively small material thickness. However forged pans are somewhat more expensive than stamped ones.

— Cast aluminium. This technology involves the manufacture of dishes by pouring molten aluminium into special molds. It is considered the most advanced, because. casting provides an optimal metal structure, as a result — excellent thermal conductivity and high reliability. However such pans are more expensive than forged and, moreover, stamped, and they weigh a little more (the latter, however, is not necessarily a drawback).

— Anodized aluminium. The term "anodized" does not describe the production technology of the cookware itself, but a specific way of processing the aluminium surface; the dishes themselves can be stamped, forged, and cast (see above). When anodized, a strong protective layer is formed on the aluminium surface, which prevents metal from coming into contact with the contents of the pan. This layer is resistant to acids; and if it is not recommended to store food for a long time or cook “sour” dishes in an ordinary aluminium frying pan, then the anodized one has no such restrictions. And in general, such a coating is considered absolutely safe for humans. The disadvantage of this option is traditional — the high price.

— Copper. One of the key advantages of copper is its unusual appearance; thanks to the reddish-golden colour, such dishes really look beautiful and stylish. On the practical side, this material is notable for its high thermal conductivity, thanks to which the pan heats up quickly and evenly — and this contributes to high-quality and fast cooking. Copper is not suitable for regular contact with food — this leads to oxidation and the appearance of harmful substances; however, this disadvantage is compensated by the use of additional coatings (eg, tin or steel). But the unequivocal disadvantage of this material is the high cost. In addition, the copper surface loses its luster literally after the first cooking, and to restore its appearance, it must be washed manually with special products. Thus, few copper pans are produced nowadays, mainly these are “designer” dishes designed for kitchens of a certain style.

— Ceramics. Ceramics accumulates and retains heat well, moreover, it tolerates even strong heat without problems and allows the use of the oven without any restrictions. On the other hand, the thermal conductivity of this material is not very high, and it is not well suited for use on burners. As a result, mainly tagines are made ceramic (see "Type"), designed specifically for cooking in the oven.

Handle material

— Metal. Metal handles, usually, are made of the same material as the pan — steel or aluminium (see above). Their main advantages are high strength and resistance to heat — in fact, the handle can withstand the same temperature as a frying pan. This ensures maximum fire safety: if you unsuccessfully leave the pan with the handle over the fire, the metal will only heat up, but will not catch fire, and you can put such a pan in the oven without problems. At the same time, this material is characterized by high thermal conductivity — in other words, the handle heats up very much along with the pan itself. Because of this, it is possible to remove the dishes from the fire only with the help of special devices (for example, rags — "grabbers" made of thick fabric) — holding the handle with bare hands, you can get burned.

Cast iron. The material used for the handles in cast iron pans (see "Pan Material"). It has all the characteristic advantages and disadvantages of metal handles (see above).

Bakelite. A kind of plastic; was created a long time ago, but is still widely used due to a number of advantages. In the case of frying pans, the main one is low thermal conductivity: Bakelite handles heat up so little that they can be fearlessly taken with bare hands when the pan is hot. In addition, this material is fireproof: even if you accidentally leave the pen ov...er an open fire, it will not catch fire, at most it will char. For added safety, many handles of this type have a combined design: a small part, directly at the pan, is made of metal, the rest is Bakelite. In terms of strength and brittleness, this material is somewhat weaker than metals, but it can withstand most shocks and shocks without problems, and is insensitive to scratches, moisture and chemicals. As a consequence, handles of this type have become widespread in modern frying pans. The most striking disadvantage of bakelite can be called poor suitability for use in the oven; however, dishes with removable handles can correct the situation (for both points, see "Additionally").

— Wood. The wooden handles have a nice "classic" look, but they conduct almost no heat, which allows them to be handled with bare hands. At the same time, this material is quite sensitive to moisture, dirt, prone to cracking and relatively short-lived; and its fire safety is very low — a handle carelessly placed over a fire can easily be charred, or even catch fire. In addition, such handles are not suitable for ovens, they must be removed (if such a possibility is provided, see "Additional") or other dishes should be used in the oven. As a result, wood is quite rare in modern frying pans and is a kind of image material intended for lovers of traditional design.

— Silicone. By itself, this material is too soft for use in the handles of pans in its pure form; therefore, in this case, a metal handle with a silicone overlay is usually meant. Silicone provides good thermal insulation, such handles, usually, can be safely taken even when the pan is heated; besides, they are softer and more pleasant to the touch than, for example, bakelite. Among the shortcomings, it is worth noting the sensitivity to strong heat, which is why in pans compatible with ovens, silicone handles have to be made removable.

Country of origin

Country of origin of the brand under which the pan is marketed. Usually, it is indicated by the "homeland" of the manufacturing company or by the location of its headquarters.

There are many stereotypes associated with the “nationality” of brands and products, but most of them have no basis nowadays. First, the actual place of production is often different from the brand's country of origin. Secondly, the quality of the goods depends not so much on geography, but on the policy of a particular company and how carefully this very quality is controlled in it. Therefore, you should pay attention to the country of origin of the brand only if you fundamentally want or (do not want) to support a manufacturer from a certain state. Quality is best judged by the reputation of a particular brand and the general price category.
Con Brio CB-2416 often compared