Product type
The general type of computer. In addition to classic
desktop models (including
gaming purposes), more unusual solutions are also found nowadays:
monoblocks,
nettops,
microcomputers. Here are the features of each type:
— Desktop. Traditional desktop PCs, in other words, models that do not fit into any of the more specific categories. For the most part, they are not even desktop, but rather "below the table" — they are carried out in vertical cases, most often placed under the tabletop, horizontal system units are extremely rare among such devices.
— Game. A variety of desktop computers, designed for professional players and gamers-enthusiasts. Such models are necessarily equipped with a powerful hardware, which allows you to comfortably play even demanding modern games. In addition, they often provide various additional features that are useful for specialization: built-in overclocking tools, high-end customizable cooling systems, etc. Another feature of gaming PCs is a distinctive design, often quite original: in an “aggressive” style, with backlight, unusual body shape, transparent inserts, etc.
— Monoblock. Monoblocks are devices that combine a screen, system unit electronics, a set of connectors and acoustics in one case; in other words, these are monitors with built-in comp
...uter “hardware”. This design has two main advantages. Firstly, the system initially has a display, and it is quite large and optimally suited to its configuration — so the user does not need to look for a separate screen. Secondly, such a computer takes up very little space — only slightly more than a monitor with the same screen size; and the absence of a separate system unit can be written down as an advantage. On the other hand, if in a regular PC the “system unit” and the monitor can be selected separately, at your discretion, then in monoblocks this is not possible — you have to get by with the combinations that the manufacturer initially offers. In addition, the possibilities for modification and upgrade for such models are noticeably more modest than for traditional ones, and there is no talk of replacing the screen at all.
— Nettop. Devices also known as "mini PCs". They are small and modestly equipped — in particular, a very limited set of ports. In addition, many nettops do not differ in performance and are designed mainly for working with documents, surfing the Internet and other simple tasks. However, there are also quite powerful performant solutions. Anyway, the main advantage of the nettop is compactness.
— Microcomputer. As the name suggests, this type of computer is extremely tiny—comparable in size to a flash drive—and looks more like portable adapters for external screens than stand-alone devices. The case of such an “adapter” usually has its own HDMI connector, which is used to connect to a monitor or TV; the same port provides power. And the case most often provides for a “mobile” energy-saving processor with integrated graphics, a compact SSD or eMMC drive, and wireless modules. Peripherals like keyboards and mice are connected mainly via Bluetooth, but many models have wired connectors like USB, and sometimes in quite a decent amount (2 or even 3). In general, such a device can be a good alternative to a tablet or laptop for those who often move between different workplaces — the main thing is that these places have appropriate screens for connection. The power of microcomputers, naturally, is low, but they are not designed for "heavy" tasks.
— Thin client. Thin clients are computers designed to be used in terminal mode for external servers. In this case, all resource-intensive calculations are performed by the server, and the functions of the thin client are limited to entering initial data and receiving results. Most of these computers do not involve independent work at all, but this is not a drawback, but a feature of specialization. In general, this format of work is not used in everyday life and in the ordinary business sphere, but it is perfect for some highly professional tasks. And since the thin client does not need high performance, it can be made as compact, lightweight and inexpensive as possible.Form factor
The form factor of a computer case characterizes, first of all, the internal volume. Main PC Form Factors:
—
Midi Tower. A representative of the tower family (tower cases) of medium size — about 45 cm in height with a width of 15-20 cm, with the number of external bays from 2 to 4. Most popular for middle-class home PCs.
—
Mini Tower. The most compact "vertical" case type, with a width of 15-20 cm, has a height of about 35 cm and (usually) less than 2 compartments with external access. Used mainly for office PCs that do not require high performance.
—
Full Tower. The tower case is one of the largest form factors for PCs today: 15-20 cm wide, 50-60 cm high, with up to 10 externally accessible bays. Most often in this form factor running advanced high performance PCs
—
Desktop. Enclosures designed for installation directly on the desktop. They often have the possibility of horizontal installation — in such a way that a monitor can be placed on top of the case — although there are also models that are installed strictly vertically. Anyway, "desktop" models are relatively small.
—
Cube Case. Cases having a cubic or close to it shape. They can have different sizes and are intended for different types of motherboards, this point in each case should be clar
...ified separately. Anyway, such cases have a rather original appearance, different from traditional "towers" and "desktops".Model
The specific model of the processor installed in the PC, or rather, its index within its series (see "Processor"). The full model name consists of the series name and this index — for example, Intel Core i3 3220; knowing this name, you can find detailed information about the processor (characteristics, reviews, etc.) and determine how suitable it is for your purposes.
Code name
The code name for CPU that the PC is equipped with.
This parameter characterizes, first of all, the generation to which the processor belongs, and the microarchitecture used in it. At the same time, chips with different code names can belong to the same microarchitecture/generation; in such cases, they differ in other parameters — general positioning, belonging to certain series (see above), the presence / absence of certain specific functions, etc.
Nowadays, chips with the following code names are relevant among Intel processors:
Coffee Lake (8th generation),
Coffee Lake (9th generation),
Comet Lake (10th generation) and
Rocket Lake (11th generation),
Alder Lake (12th generation),
Raptor Lake (13th generation),
Raptor Lake-S (14th generation). For AMD, the list looks like this:
Zen+ Picasso (3rd gen),
Zen2 Matisse (3rd gen),
Zen2 Renoir (4th gen),
Zen 3 Cezanne (5th gen),
Zen 3 Vermeer (5th gen),
Zen 4 Raphael (6th gen).
Speed
Clock speed of the CPU installed in the PC.
In theory, higher clock speeds have a positive effect on performance because they allow the CPU to perform more operations per unit of time. However, this indicator is rather weakly related to real productivity. The fact is that the actual capabilities of the CPU strongly depend on a number of other factors - the overall architecture, cache size, number of cores, support for special instructions, etc. As a result, you can compare by this indicator only chips from the same or similar series (see “CPU”), and ideally, also from the same generation. And that's pretty approximate.
TurboBoost / TurboCore
Processor clock speed when running in TurboBoost or TurboCore mode.
Turbo Boost technology is used in Intel processors, Turbo Core — AMD. The essence of this technology is the same both there and there: if some of the cores work under high load, and some are idle, then some tasks are transferred from more loaded cores to less loaded ones, which improves performance. This usually increases the clock frequency of the processor; this value is indicated in this paragraph. See above for more information on clock speed in general.
Speed
The clock speed of the RAM that comes with the PC. This is one of the parameters that determine the capabilities of RAM: with the same amount and type of memory (see above), a higher clock frequency will mean faster performance. However such details are rarely required by an ordinary user, but they are important for enthusiasts and professionals.
Also note that this indicator can be used to determine the possibilities for upgrading the system: the motherboard will be able to work normally with brackets that have the same or lower clock frequency, but compatibility with faster memory should be specified separately.
Graphics card type
The type of graphics card used in the PC. Modern computers can be equipped with both
integrated modules (among those you can find products of
Apple and
Intel –
HD Graphics,
UHD Graphics and
Iris) and
discrete video cards (including
professional ones), which can be installed in several pieces using
SLI or CrossFire technology. In addition, on the market you can find configurations that are not equipped with graphics adapters at all. Here is a more detailed description of each option:
— Integrated. Video cards that are built directly into the processor (less often, into the motherboard) and do not have their own dedicated memory: the memory for video processing is taken from the general “RAM”. The main advantages of such modules are low cost, low power consumption, minimal heat release (which does not require special cooling systems), and extremely compact dimensions. On the other hand, the performance of this type of graphics is low: it is enough for simple everyday tasks like web surfing, watching videos and undemanding games, but for more serious purposes it is still desirable to have a discrete video adapter in the system. And the fact that integrated systems take
...up part of the system RAM during operation does not contribute to performance either.
— Discrete. Video cards in the form of separate modules with a specialized processor and their own memory. They are noticeably more expensive than integrated ones, take up more space and consume more energy, but all these shortcomings are offset by a key advantage — high performance. This allows you to work even with “heavy” graphic content like modern games, 3D rendering, high-resolution video editing, etc. (although the specific characteristics of discrete graphics, of course, may be different). In addition, graphics processing in such systems does not use the main RAM, which is also an important advantage. For additional performance enhancement, discrete video adapters can be combined into SLI / CrossFire systems, this option is indicated separately (see below). Also note that in most modern PCs, such graphics are combined with a processor with an integrated graphics core, and often work in hybrid mode: the integrated module is used for simple tasks, and when the load increases, the system switches to a discrete graphics card.
— SLI/CrossFire. Several discrete video cards (see above) bundled using SLI technology (NVIDIA is used) or Crossfire (AMD is used). From the point of view of an ordinary user, there are no fundamental differences between these technologies: both of them allow you to combine the computing power of several video cards, thus increasing graphics performance. However, such graphics are not cheap, and therefore they are used exclusively in high-performance PCs with an emphasis on graphic capabilities — in particular, gaming ones.
— Sold separately. The absence of any graphics card in the initial configuration of the PC. A rather rare option found in some high-end workstations: such configurations are equipped with professional processors without an integrated graphics core and do not have discrete graphics — it is assumed that such an adapter is more convenient for the user to buy separately.Graphics card model
The main manufacturers of video cards nowadays are
AMD,
NVIDIA and Intel, and each has its own specifics. NVIDIA produces primarily discrete solutions; Among the most common are
the GeForce MX1xx,
GeForce MX3xx,
GeForce GTX 10xx series (in particular
GTX 1050,
GTX 1050 Ti and
GTX 1060),
GeForce GTX 16xx,
GeForce RTX 20xx,
GeForce RTX 30xx(
GeForce RTX 3060,
GeForce RTX 3060 Ti,
GeForce RTX 3070,
GeForce RTX 3070 Ti,
GeForce RTX 3080,
GeForce RTX 3080 Ti, GeForce RTX 3090,
GeForce RTX 3090 Ti),
GeForce RTX 4060 , GeForce RTX 4060 Ti,
GeForce RTX 4070,
GeForce RTX 4070 SUPER,
GeForce RTX 4070 Ti,
GeForce RTX 4070 Ti SUPER,
Ge Force RTX 4080,
GeForce RTX 4080 SUPER,
GeForce RTX 4090 and separate
Quadro series. AMD offers both discrete and integrated graphics - including the popular
Radeon RX 500,
Radeon RX 5000,
Radeon RX 6000,
Radeon RX 7000 and
AMD Radeon Pro series. And Intel deals exclusively with modules integrated into processors of its own production - these can be HD Graphics, UHD Graphics and Iris.
Note that many configurations with discrete graphics also have an integrated graphics module; in such cases, the name of the discrete video card is indicated as more advanced.