Dark mode
United Kingdom
Catalog   /   Computing   /   Components   /   Sound Cards

Comparison Asus Xonar SE vs Asus Strix Soar

Add to comparison
Asus Xonar SE
Asus Strix Soar
Asus Xonar SEAsus Strix Soar
Compare prices 16Compare prices 8
User reviews
2
0
0
0
TOP sellers
Main
Protective cover design with LED light. Premium DAC. Operation in 192 kHz/24 bit mode. 7.1 format support. Friendly with headphones up to 600 ohms. Very handy Sonic Studio software.
Featuresgaminggaming
Specs
Typeinternalinternal
InterfacePCI-EPCI-E
Channels5.17.1
AudiochipC-Media 6620AC-Media 6632AX
ASIO
Additional power
DAC
DAC resolution24 bit24 bit
Max. sampling rate192 kHz192 kHz
Signal-to-noise ratio116 dB116 dB
ADC
ADC resolution24 bit24 bit
Max. sampling rate192 kHz192 kHz
Signal-to-noise ratio110 dB110 dB
More features
 
front panel output
headphones amplifier
 
Inputs
mini-Jack (3.5 mm)11
Outputs
mini-Jack (3.5 mm)35
Optical S/P-DIF1
Coaxial S/P-DIF1
Added to E-Catalogjanuary 2019november 2015

Channels

The most advanced multi-channel audio format that a sound card is capable of outputting.

2. Standard stereo sound on two channels — left and right. This format allows you to provide a sense of surround sound (especially when using headphones), which is quite enough for most simple tasks. However, it noticeably loses to multi-channel sound in terms of the "immersion effect", which can be critical for demanding gamers and audiophiles.

5.1. The classic and most popular multi-channel surround sound format today: a centre channel, two front and two rear channels allow you to achieve a full-fledged “surround effect”, and a separate subwoofer channel provides rich bass sound.

7.1. The 7.1 format differs from 5.1 by the presence of two additional channels. There are several options for localizing these channels — for example, a pair of side speakers, a pair of additional speakers above the front ones, etc. Anyway, the 7.1 format provides a more reliable surround sound transmission than 5.1, but such cards are more expensive, and there is less specialized content for 7.1.

When choosing a sound card by the number of channels, it is worth considering such moments. Firstly, multi-channel options are capable of producing sound in simpler formats (for example, a 7.1 card can be used for 5.1 acoustics), and stereo sound output is support...ed by all models in general. Secondly, modern multimedia software (in particular, codecs) allows you to output multi-channel audio through a card with fewer channels — for example, play 5.1 sound through a two-channel card with stereo speakers without quality loss. Thirdly, for the full-fledged operation of multi-channel sound, you will need not only a card, but also appropriate acoustics; therefore, it makes no sense to specifically look for a multi-channel model if you plan to use exclusively stereo speakers.

Audiochip

Brand of the audio chip installed in the sound card.

The audio chip is one of the most important parts of a sound card, a kind of "heart" of the whole circuit, and it is on its characteristics that the sound quality and other capabilities of a particular model largely depend. Knowing the brand of the chip, you can easily find various information on it — official specifications, test results, reviews, etc. — and based on this, draw a conclusion to what extent this sound card is able to meet your requirements. Of course, for ordinary video cards (see "View") there is no need to delve into such details, but when choosing a gaming or audiophile model, they can be very useful.

Additional power

The need to connect additional power to the sound card.

Most of both internal and external (see "Type") sound cards are powered directly through the connection connector (see "Connection interface"). At the same time, for normal operation of advanced models (for example, audiophile and gaming, as well as some DACs; see "View"), this power may not be enough, which requires an additional power source. In internal audio cards, it is carried out from the computer power supply, in external ones — directly from the 230 V network.

More features

— Headphone Amplifier. The presence of a separate headphone amplifier in the design of the sound card. Such equipment allows at least to improve the overall sound of the “ears”, as well as to implement various additional settings for such sound (for example, a separate volume control). And some headphones — primarily high-impedance Hi-Fi models — in principle cannot be used without special amplifiers.

— External control module. The presence of an external control module in the design of the sound card. Such a module is actually a control panel with a wired connection; it doesn't give you the freedom of movement that a wireless remote control does (see below), but it's cheaper and often more convenient. So, the control module does not have to be in direct line of sight with respect to the audio card, and the length of the wire is often enough to place the device at the user's hand. However the set of adjustments placed on the external unit is usually limited to the most basic settings; however, even this, usually, is quite enough for comfortable use. In addition, the control unit often provides additional connectors for connecting headphones and a microphone. Among other things, this feature is especially convenient in games — it allows you to adjust the sound without distracting from the game itself. However, other types of sound cards can also be equipped with external modules (see "View").
...
— Remote control. A remote control is included with the sound card. Do not confuse this function with the external control module described above: in this case, we mean a classic wireless IR remote control, like those used in TVs. Such a device does not necessarily cover all the capabilities of the audio adapter, however, the range of functions of the remote control can be quite extensive. On the other hand, the need to control a sound card from a distance is extremely rare, and in most cases, the mentioned external module is enough for this. So models with a remote control are not widely used.

Exit to the front panel. Ability to connect an internal sound card (see "Type") to the connectors on the front panel of the PC. To do this, a special connector (or several connectors) is provided on the board, which is connected to the corresponding connector (s) using a wire. The convenience of this feature is obvious: in desktop computers, the front panel is located closest to the user, and it is to it that it is easiest to connect peripherals that involve frequent plugging and unplugging, such as headphones and microphones. Actually, connectors for such devices are most often displayed on the front panel.

mini-Jack (3.5 mm)

The number of outputs with 3.5 mm mini-Jack connectors in the design of the sound card. It is this connector that is used by the vast majority of modern computer headphones and speakers of all price categories (although it is relatively rare in top-end technology), and it is very popular in other consumer-class audio devices. Therefore, almost all entry-level and mid-level sound cards have at least one 3.5 mm jack; the absence of such outputs is typical for specialized models (for example, DAC, see "View"). Also note that a single mini-jack output can work with a maximum of two channels, however, this interface is also used in multi-channel sound systems — in this case, the audio card is equipped with several connectors, each of which is responsible for its own part of the system. For example, for 5.1 systems, one connector is allocated to the centre, one to a pair of front channels, one to a pair of rear channels, and one to a subwoofer.

As with 3.5mm inputs (see above), this type of output can be used in a variety of ways and can even be configurable.

Optical S/P-DIF

The number of S/P-DIF optical outputs provided in the design of the sound card.

S/P-DIF is a digital audio transmission standard, including multichannel, quite widespread in home acoustics. At the hardware level, this standard has two versions — coaxial (see below) and optical, which is discussed here. The TOSLINK fiber optic cable used for this type of connection is highly resistant to interference: electromagnetic pickups do not interact with the light pulses that transmit the signal. On the other hand, such a cable is more expensive than coaxial electrical wire and requires careful handling — strong pressure or a kink can damage the fiber.

Coaxial S/P-DIF

The number of S/P-DIF outputs with coaxial connectors provided in the design of the sound card.

S/P-DIF is a sound transmission standard, including multi-channel, in digital format, quite widespread in home acoustics. At the hardware level, this standard has two versions — optical (see above) and coaxial, which is discussed here. For coaxial connection, a shielded electrical wire with RCA connectors is used. It costs less than fiber optic cable and is not as sensitive to pressure and sharp bends — however, despite the shielding, it does not provide a complete guarantee against electromagnetic interference. Accordingly, it is definitely not worth using a regular (non-shielded) RCA cable with a coaxial interface — there is a high probability of unstable operation due to external interference.
Asus Xonar SE often compared
Asus Strix Soar often compared