Lens type
General lens type. Note that this parameter is largely determined by the equivalent (not actual) focal length, but in the characteristics of optics, the actual value is most often indicated; see "Focal length" for more on this.
The type is not indicated for any optics, but only for models that have a pronounced specialization and clearly fit into a certain category. In addition to them, there are so-called
universal lenses — see below about them. And specialized models can be of the following types:
—
Fix. This category on our website includes almost all lenses that do not provide the ability to change the focal length. These can be wide-angle models, and optics with a long focal length, providing a high degree of magnification, and models with average values; the only exception is the ultra-wide-angle fisheye, which is a separate type (see below). Due to the simpler design, fixes are usually cheaper and more reliable than similar zoom models. Their main disadvantage is the actual constant focal length. Because of this, when working with fixes, you have to have your own lens for each type of shooting, and zooming in / out of the image is carried out solely by moving the camera closer / farther relative to the object being filmed (in professional jargon — “zoom with your feet”).
—
Wide angle. Zoom lenses, the minimum value of which is up to 18 m
...m inclusive, the maximum is up to 40 mm inclusive (both are in 35 mm equivalent). This provides a wide viewing angle with virtually no visible distortion (unlike ultra-wide-angle models, see below). "Wide angles" are often used for shooting landscapes, large objects, etc.; also, such a lens can be useful in tight conditions, where you need to capture the widest possible scene (for example, a large group of people), and the situation does not allow you to move far away.
— Ultra wide angle. Also, this type of lens is called fisheye, or "fisheye". Their equivalent focal length is up to 17 mm inclusive, and viewing angles can reach 180° and even more, which allows capturing a very large area of the surrounding space in one picture (for example, the sky around the entire circumference of the horizon). Such lenses have noticeable distortion in the resulting image: the centre of the frame looks closer than the edges, and straight lines that do not pass through the centre of the frame become crooked. Because of this, fisheye optics got their name: the view through it is similar to how a fish sees the ground from under the water. Most often, fisheyes have a fixed focal length, but there are also zoom lenses. Such lenses are used, in particular, to create panoramas, shooting in confined spaces, as well as to provide artistic effects.
— Tele. Lenses with a long focal length and, accordingly, a high degree of magnification, designed primarily for shooting at long distances. If we talk about specific numbers, then in our catalog telephoto lenses include models with a variable focal length, in which the lower limit of the focal length is at least 50 mm, and the upper limit is at least 200 mm. Such optics can be convenient, in particular, when shooting nature, sports competitions and mass events.
In addition to those described above, many lenses are produced that meet the criteria for several types at once or do not fit into any of them. Examples include, in particular, an intermediate option between wide-angle and telephoto lenses with a focal length of 24 to 55 mm, or a model with an extensive adjustment range like 28 – 200 mm, covering both of these types. Such lenses without specialization are called universal. In general, their scope is quite wide, and most of the optics supplied in the kit (kit) with SLR cameras belong to the mentioned “intermediate option”. However in terms of image quality, universal models are often inferior to specialized optics with a similar price; on the other hand, a set of several specialized lenses often costs more than a high-end "station wagon" with the same capabilities.System
The system indicates which brand of cameras this lens is designed for. Manufacturers of photographic equipment often use original mounting systems in their cameras that are not always compatible with each other; therefore, for normal use, the lens must be originally designed for the corresponding system. At the same time, note that the actual compatibility will also depend on the mount (see "Bayonet (mount)"). At the same time, one system often includes several mounts (for example, Canon and Nikon); it happens vice versa — one mount can be used in several systems at once (for example,
Micro 4/3 is used by both Olympus and Panasonic). In general, the optimal selection order is as follows: first clarify the compatibility of the lens with the system, then with a specific mount.
Also note that third-party manufacturers (who do not produce cameras and deal only with lenses) often produce models designed for several different systems at once. Such compatibility can be achieved both through a set of adapters (included in the package or sold separately), and through the release of different modifications of the same lens, differing only in mounts. The features of each such model should be specified separately.
Mount
The type of mount used to connect the lens to the camera. The name comes from the English "bayonet", meaning "bayonet" and a bayonet-type connection. Bayonet mounts are used in the vast majority of modern digital cameras due to their reliability and ease of use.
Full compatibility of the lens with the camera is guaranteed only if the types of their mounts match. Some mounts are compatible with each other via adapters, but such a connection can limit the capabilities of the lens (for example, it will make it impossible to use autofocus) and is generally not considered optimal. It is worth considering that within the same system (see above) different mounts are often used, which are also incompatible with each other.
So, the manufacturer Canon has mounts
EF-M,
EF-S,
EF,
RF,
RF-S. Leica has
Leica M,
Leica SL,
Leica TL. Nikon has
Nikon 1,
Nikon F,
Nikon Z in its arsenal. Pentax optics are equipped with
Pentax 645,
Pentax K,
Pentax Q. Samsung uses
NX-M and
NX mounts. Sony models include
Sony A and
Sony E. In addition, there are other types of mounts on the market - both branded (
Fujifilm G,
Fujifilm X,
Hasselblad H,
Sigma SA) and universal (
Four Thirds (4/3),
Micro 4/3).
Note that there are lenses that are declared compatible with several mounts at once. This “omnivorousness” can be realized in different ways. For example, some models have a non-standard mount on the lens body, and compatibility with various mounts is ensured through the use of adapters; These adapters can be included in the delivery set or purchased separately. Another option is that the lens is available in several separate modifications, each for its own mount. These details should be clarified before purchasing.
Minimum focus distance
Minimum focus distance (m) - the smallest distance from which you can focus on an object and take a photo. Usually it ranges from 20 cm for wide-angle lenses to several metres for telephoto. In the macro mode of the camera or with the help of macro lenses, this distance can be less than 1 centimeter.
Maximum zoom
The degree of magnification of the object being shot when using a
lens for macro shooting (that is, shooting small objects at the maximum possible approximation, when the distance to the subject is measured in millimetres). The degree of magnification in this case means the ratio of the size of the image of the object obtained on the matrix of the camera to the actual size of the object being shot. For example, with an object size of 15 mm and a magnification factor of 0.3, the image of this object on the matrix will have a size of 15x0.3=4.5 mm. With the same matrix size, the larger the magnification factor, the larger the image size of the object on the matrix, the more pixels fall on this object, respectively, the clearer the resulting image, the more details it can convey and the better the lens is suitable for macro photography. It is believed that in order to obtain macro shots of relatively acceptable quality, the magnification factor should be at least 0.25 – 0.3.
Sensor size
The size of the matrix for which the lens was originally designed.
The formats (and sizes) of modern matrices can be indicated diagonally in inches (1/1.8", 1/2.3" — in this case, the conditional "Visicon" inch is taken, which is about 17 mm), according to the actual dimensions (13.2x8.8 mm) or by symbol (APS-C, full frame). In general, the larger the sensor, the more advanced and expensive it is.
Among modern lenses, solutions for such matrix formats are most popular, in ascending order of size:
4/3(17.3x13 mm, used in cameras of the Four Thirds and Micro Four Thirds standards),
APS-C(23x15 mm with slight variations, SLR and MILC cameras of the middle class),
full frame(36x24 mm, the size of a standard film frame — advanced DSLRs),
big frame(anything larger than full frame — high-end professional cameras). Optics for other formats is somewhat less common.
Note that it is technically allowed to use with “non-native” sensors, however, in such cases, the performance characteristics of the optics will differ from those claimed. So, when installed on a smaller matrix (for example, a full frame lens on an APS-C camera), only a part of the image created by the lens will fall on such a sensor. As a result, the space that gets into the frame will be narrower, and the details in the frame will be larger, as if the focal
...length of the lens has increased (although it has remained unchanged, only the matrix has changed). And when installed on a larger sensor, the covered space will increase, the detail will decrease; in some cases, the size of the “picture” provided by the lens may simply not be enough for the entire area of the matrix, and the pictures will be obtained with black space around the edges.Autofocus drive
A type of drive that ensures the movement of lens structural elements during automatic focus. Currently, the following types can be used:
—
Ultrasonic motor. The most advanced type of drive to date. Ultrasonic motors are much faster than conventional motors, provide higher accuracy, consume less power and are virtually silent. However, their cost is quite high.
—
Stepper motor. Drive control focal length and zoom (zoom). This type of motor is used for the most part only in full-size digital cameras. Among the advantages of a stepper motor, one can note: high reliability and accuracy of operation; in addition, it does not require power supply to maintain focus and zoom. Of course, stepper motors are not without drawbacks. Among the minuses can be identified: slow speed and increased noise. Additionally, a stepper motor is characterized by large dimensions and a rather large weight, which physically does not allow this type of drive to be integrated into the optics of mobile phones and ultra-compact cameras.
— Motor. In this case, an electric
motor of a traditional design is meant. Such drives are simple and, as a result, inexpensive. Their disadvantages are the relatively low speed of operation, as well as the noise produced during this; the latter can sometimes be critical — for example, when shooting wildlife. Recently, designers have been us
...ing various tricks to neutralize these shortcomings, but in general, the characteristics of conventional motors still remain relatively modest.
— Is absent. The complete absence of an autofocus motor in the lens. Focus such optics can be carried out either by the “screwdriver” system, or strictly manually (for more details on both options, see below).Manual focus
This category includes lenses in which
there is no autofocus by design, and focus is carried out only manually (usually using a special ring). This is less convenient than
autofocus, in part due to the fact that it requires a certain amount of skill from the photographer and comes with an increased risk of "missing the moment" or ruining the frame. On the other hand, even the best autofocus systems don't always work as well as we'd like; manual mode, on the other hand, allows the photographer to choose which part of the scene is in focus. This provides ample features, in particular, for artistic photography. In addition, the absence of unnecessary mechanization has a positive effect on the price, compactness and weight of the optics.
Internal focus
Lenses using the
internal focus system. In such optics systems, focus is carried out only due to the movement of elements inside the lens body; the outer parts remain completely fixed and the size of the lens does not change. This provides additional convenience — in particular, it allows you to easily use petal hoods and those types of filters for which the correct position on the lens is important (in particular, gradient ones). In addition, the absence of moving elements from the outside has a positive effect on security and resistance to dust / precipitation (although the specific degree of dust and water protection may be different).