Dark mode
United Kingdom
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Acer Aspire 5 A515-43G [A515-43G-R58N] vs Acer Aspire 3 A315-42G [A315-42G-R5FR]

Add to comparison
Acer Aspire 5 A515-43G (A515-43G-R58N)
Acer Aspire 3 A315-42G (A315-42G-R5FR)
Acer Aspire 5 A515-43G [A515-43G-R58N]Acer Aspire 3 A315-42G [A315-42G-R5FR]
Outdated ProductOutdated Product
TOP sellers
Typelaptoplaptop
Screen
Screen size15.6 "15.6 "
Screen typeIPSTN+film
Surface treatmentmatteanti-glare
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Refresh rate60 Hz60 Hz
CPU
SeriesRyzen 5Ryzen 5
Model3500U3500U
Code namePicasso (Zen+)Picasso (Zen+)
Processor cores44
Total threads88
CPU speed2.1 GHz2.1 GHz
TurboBoost / TurboCore frequency3.7 GHz3.7 GHz
3DMark065950 score(s)6857 score(s)
Passmark CPU Mark7808 score(s)7941 score(s)
SuperPI 1M12 с12 с
RAM
RAM8 GB8 GB
Max. RAM16 GB16 GB
RAM typeDDR4DDR4
RAM speed2400 MHz2400 MHz
Slots22
Graphics card
Graphics card typededicateddedicated
Graphics card seriesAMD RadeonAMD Radeon
Graphics card modelRadeon 540XRadeon 540X
Video memory2 GB2 GB
Memory typeGDDR5GDDR5
3DMark0616578 points
3DMark Vantage P11545 points
Storage
Drive typeSSD M.2SSD M.2
Drive capacity256 GB256 GB
Additional 2.5" slot
Connections
Connection ports
HDMI
HDMI
Card reader
USB 2.022
USB 3.2 gen11 pc1 pc
Alternate Mode
LAN (RJ-45)1 Gbps1 Gbps
Multimedia
Webcam1280x720 (HD)640x480 (VGA)
Camera shutter
Speakers22
Security
kensington / Noble lock
kensington / Noble lock
Keyboard
Backlightwhiteis absent
Key designisland typeisland type
Num block
Input devicetouchpadtouchpad
Battery
Battery capacity4200 mAh
Battery capacity48 W*h37 W*h
Battery voltage11.4 V
Operating time7 h5 h
Powered by USB-C (Power Delivery)
Fast charge
General
Preinstalled OSLinuxLinux
Materialaluminium / plasticmatte plastic
Dimensions (WxDxT)363x248x18 mm363x248x20 mm
Weight1.9 kg1.9 kg
Color
Added to E-Catalogjanuary 2020october 2019

Screen type

The technology by which the matrix of the laptop is made.

Matrices of the TN+film, IPS and *VA types are most widely used nowadays; less common are screens like OLED, AMOLED, QLED, miniLED, as well as more specific solutions like LTPS or IGZO. Here is a more detailed description of all these options:

— TN-film. The oldest, simplest and most inexpensive technology currently in use. The key advantages of this type of display are low cost and excellent response time. On the other hand, such matrices are not of high image quality: brightness, colour fidelity and viewing angles of TN-film screens are at an average level. These indicators are quite enough for working with documents, web surfing, most games, etc.; however, for more serious tasks that require a high-quality and reliable picture (for example, design or photo / video colour correction), such screens are practically unsuitable. Thus, TN-film matrices are relatively rare nowadays, mainly among low-cost laptops; more advanced devices are equipped with better screens, most often IPS.

— IPS (In-Plane Switching). The most popular type of matrix for laptops in the middle and top price range; however, it is increasingly common in low-cost models, and for trans...formers and 2-in-1 devices (see "Type") it is almost a standard option. Screens of this type are noticeably superior to TN-film in terms of the quality of the “picture”: they provide a bright, reliable and rich image that hardly changes when the viewing angle changes. In addition, this technology allows to achieve extensive colour gamuts in various special standards (see below) and is suitable for creating displays with advanced features such as HDR support or Pantone / CalMAN certification (also see below). Initially, IPS matrices were expensive and had a slow response time; however, nowadays, various modifications of this technology are used, in which these shortcomings are fully or partially compensated. At the same time, different modifications may differ in practical characteristics: for example, some are created based on the maximum reliability of the picture, others differ in affordable cost, etc. So it's ok to clarify the actual characteristics of the IPS screen before buying — especially if you plan to use a laptop for specific applications where image quality is critical.

— *V.A. Various modifications of matrices of the "Vertical Alignment" type: MVA, PVA, Super PVA, ASVA, etc. The differences between these technologies are mainly in the name and the manufacturer. Initially, matrices of this type were developed as a compromise between IPS (high-quality, but expensive and slow) and TN-film (fast, inexpensive, but modest in image quality). As a result, *VA screens turned out to be more affordable than IPS and more advanced than TN-film — they have good colour reproduction, deep blacks and wide viewing angles. At the same time, it is worth noting that the colour balance of the picture on such a display changes somewhat when the viewing angle changes. This makes it difficult to use *VA matrices in professional colour work. In general, this option is designed mainly for those who do not need perfect colour accuracy and at the same time want to see a bright and colorful image.

— OLED. Matrices based on the so-called organic light-emitting diodes. The key feature of such displays is that in them each pixel is a source of light in itself (unlike classic LCD screens, in which the backlight is made separately). This design principle, combined with a number of other solutions, provides excellent brightness, contrast and colour reproduction, rich blacks, the widest possible viewing angles and a small thickness of the screens themselves. On the other hand, laptop OLED matrices for the most part turn out to be quite expensive and “gluttonous” in terms of energy consumption, and they wear out unevenly: the more often and brighter a pixel glows, the faster it loses its working properties (however, this phenomenon becomes noticeable only after several years of intensive use). In addition, for a number of reasons, such screens are considered poorly suited for gaming applications. In light of all this, sensors of this type are rare these days — mostly in individual high-end laptops designed for professional colour work and with appropriate features such as HDR support, wide colour gamut and/or Pantone / CalMAN certification (see below).

— AMOLED. A kind of matrices on organic light-emitting diodes, created by Samsung (however, it is also used by other manufacturers). In terms of its main features, it is similar to other types of OLED matrices (see above): on the one hand, it allows you to achieve excellent image quality, on the other hand, it is expensive and wears out unevenly. At the same time, AMOLED screens have even more advanced colour performance combined with better power optimization. And the low prevalence of this technology is mainly due to the fact that it was originally created for smartphones and only recently began to be used in laptops (since 2020).

— MiniLED. Screen backlight system on a substrate of miniature LEDs with a size of about 100-200 microns (µm). On the same display plane, it was possible to increase the number of LEDs several times, and their array is placed directly behind the matrix itself. The main advantage of miniLED technology can be called a large number of local dimming zones, which in total gives improved brightness, contrast and more saturated colors with deep blacks. MiniLED screens unlock the potential of High Dynamic Range (HDR) technology, suitable for graphic designers and digital content creators.

— QLED. Matrices on "quantum dots" with a redesigned LED backlight system. In particular, it provides the replacement of multilayer colour filters with a special thin-film coating of nanoparticles. Instead of traditional white LEDs, QLED panels use blue ones. As a result, a set of design innovations makes it possible to achieve a higher brightness threshold, colour saturation, improve the quality of colour reproduction in general, while reducing the thickness of the screen and reducing power consumption. The reverse side of the QLED-matrices coin is an expensive cost.

— PLS. A type of matrix developed as an alternative to the IPS described above and, according to some sources, is one of its modifications. Such matrices are also characterized by high colour rendering quality and good brightness; in addition, the advantages of PLS include good suitability for high-resolution screens (due to high pixel density), as well as lower cost than most IPS modifications, and low power consumption. At the same time, the response speed of such screens is not very high.

— LTPS. An advanced type of TFT-matrix, created on the basis of the so-called. low temperature polycrystalline silicon. Such matrices have high colour quality, and are also well suited for screens with high pixel density — in other words, they can be used to create small displays with very high resolution. Another advantage is that part of the control electronics can be built directly into the matrix, reducing the overall thickness of the screen. On the other hand, LTPS matrices are difficult to manufacture and expensive, and therefore are found mainly in premium laptops.

— IGZO. An LCD technology that uses a semiconductor material based on indium, gallium, and zinc oxides (as opposed to more traditional amorphous silicon). This technology provides fast response time, low power consumption and very high colour quality; it also achieves high pixel densities, making it well-suited for ultra-high resolution screens. However, while such displays in laptops are extremely rare. This is explained both by the high cost and by the fact that rather rare metals are used in the production of IGZO matrices, which makes large-scale production difficult.

Surface treatment

Glossy. A glossy surface improves the overall picture quality: other things being equal, the picture on such a screen looks brighter and more colorful than on a matte one. On the other hand, pollution is very noticeable on such a surface, and in bright external lighting, a lot of glare appears on it, which can greatly interfere with viewing. Therefore, instead of the classic gloss, laptops are increasingly using an anti-reflective version of such a coating (see below). Nevertheless, this option still does not lose popularity: it is somewhat cheaper than the “anti-glare”, and in soft, relatively dim lighting, it can even provide a more pleasing image to the eye.

Matte. Matte finish is inexpensive and does not form glare even from fairly bright lighting. On the other hand, the picture on such a screen is noticeably dimmer than on a similar glossy display. However, this moment can be compensated by various design solutions (primarily a good margin of brightness); so this option can be found in all categories of modern laptops — from low-cost models for working with documents to top gaming configurations.

Glossy (anti-glare). A variation on the glossy finish described above, designed to reduce glare from external light sources. Such screens really glare noticeably less than traditional glossy ones (or even do not give glare at all); at the same time, in...terms of image quality, they are at least superior to matte ones. So it is this type of coating that is most popular nowadays.

3DMark06

The result shown by the laptop processor in 3DMark06.

This test is primarily focused on testing performance in games — in particular, the ability of the processor to process advanced graphics and artificial intelligence elements. Test scores are reported as scores; the higher this number, the higher the performance of the tested chip. Good 3DMark06 results are especially important for gaming laptops.

Passmark CPU Mark

The result shown by the laptop processor in the Passmark CPU Mark test.

Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).

3DMark06

The result shown by the laptop's graphics card in 3DMark06.

This test primarily determines how well a graphics card handles intensive workloads, in particular, with detailed 3D graphics. The test result is indicated in points; the more points, the higher the performance of the video adapter. Good 3DMark06 scores are especially important for gaming laptops and advanced workstations. However, it is difficult to call them reliable, since measurements are made on video cards with different TDPs and an overall average score is given. Thus, your laptop can have either more or less than the specified result - it all depends on the TDP of the installed video card.

3DMark Vantage P

The result shown by the laptop graphics card in the 3DMark Vantage P test.

Vantage P is a variant of the popular 3DMark test — namely, the next version of this test after 3DMark06 (see above). Like all such tests, it is designed to test the performance of graphics under high loads and displays the results in points; the more points, the more powerful and performant the graphics card is. Good results in 3DMark Vantage P are especially important if the laptop is going to be used for demanding games. However, it is difficult to call them reliable, since measurements are made on video cards with different TDPs and an overall average score is given. Thus, your laptop can have either more or less than the specified result - it all depends on the TDP of the installed video card.

Additional 2.5" slot

The presence in the laptop of an additional compartment for an internal drive of the form factor 2.5 ".

Usually, to install or remove a drive in such a bay, it was not necessary to disassemble the entire laptop — just remove the cover or remove the plug. As for 2.5", this is the traditional form factor for hard drives (HDD) for "laptop" purposes, although other types of media (SSD and SSHD — see "Media Type") can be produced in this format. For connection 2.5 "storage drives normally use the SATA connector — it is not as fast as more modern standards like M.2 PCI-E (see "Drive Interface"), however, it is cheaper, and for HDD this connector is quite enough.

Thus, the presence of an additional 2.5" bay allows you to quickly and cost-effectively increase the total volume of laptop drives.

Webcam

The resolution of the webcam installed in the laptop. Such cameras are usually placed above the display; Initially, their purpose was video communication (for example, via Skype), but other applications are also possible — recording videos, live broadcasts of certain events on the Internet, etc.

The resolution of the webcam in this case is indicated by the maximum video resolution that it supports. The most low-cost options give out only 640x480 and are not suitable for anything, except for the mentioned video communication; in the most advanced, this indicator can reach Full HD quality (1920x1080 pixels) and even Quad HD.

There are also laptops that do not have a built-in webcam. This solution allows you to protect the user from the threat of hacker attacks through the laptop's camera and minimizes the likelihood of personal data leaking.

Backlight

The presence of a backlight in the laptop keyboard. This feature not only gives the device a stylish look, but also makes the keys more visible than on non-backlit laptops. The specific implementation of the backlight may vary - it depends both on the price category and on the general purpose of the laptop. For example, single-colour lighting is found in both inexpensive laptops and professional ultrabooks. And gaming models may provide advanced RGB backlighting and even the ability to synchronize the backlight.

The backlight colour is usually chosen by the manufacturer taking into account the general specialization of the laptop. Thus, white backlighting is popular in “office” devices - it fits well into a restrained business style and at the same time looks good on its own. Yellow (golden) colour is noticeably less common - mainly among fashion laptops, although there are exceptions. In turn, among gaming models the most advanced type of backlighting is often found - RGB: it allows you to choose the shade as you wish, and besides, a change in colour can signal different gaming and system events. A number of top gaming laptops feature multi-zone RGB backlighting - each zone can be illuminated indiv...idually or in combination with other areas of the keys. One of the simplest options is a 3-zone backlight highlighting the “WSAD” keys and another additional area. A more advanced implementation is the 4-zone RGB backlighting of the keyboard, and the most chic is the 24-zone backlighting or even customizable backlighting for each individual key, visually distinguishing the buttons from others. Gaming devices are also produced with simpler, single-colour backlighting systems - in such cases, the keyboards usually glow red, green or blue. It is these shades that are best combined with the characteristic design of gaming laptops; Moreover, the red glow is usually used in devices with a rather catchy and “aggressive” appearance (and in itself is an important element of such a style), while blue and green are typical for a more restrained design.
Acer Aspire 3 A315-42G often compared