United Kingdom
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison HP Pavilion 15-cw1000 [15-CW1043NL 6NC82EA] vs Acer Aspire 5 A515-43 [A515-43-R1JF]

Add to comparison
HP Pavilion 15-cw1000 (15-CW1043NL 6NC82EA)
Acer Aspire 5 A515-43 (A515-43-R1JF)
HP Pavilion 15-cw1000 [15-CW1043NL 6NC82EA]Acer Aspire 5 A515-43 [A515-43-R1JF]
Outdated ProductOutdated Product
TOP sellers
Typelaptoplaptop
Screen
Screen size15.6 "15.6 "
Screen typeIPSIPS
Surface treatmentanti-glarematte
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Refresh rate60 Hz60 Hz
Brightness220 nt
Colour gamut (NTSC)45 %
CPU
SeriesRyzen 5Ryzen 5
Model3500U3500U
Code namePicasso (Zen+)Picasso (Zen+)
Processor cores44
Total threads88
CPU speed2.1 GHz2.1 GHz
TurboBoost / TurboCore frequency3.7 GHz3.7 GHz
3DMark066857 score(s)5950 score(s)
Passmark CPU Mark7990 score(s)7808 score(s)
SuperPI 1M12 с12 с
RAM
RAM8 GB8 GB
Max. RAM16 GB16 GB
RAM typeDDR4DDR4
RAM speed2400 MHz2400 MHz
Slots22
Graphics card
Graphics card typeintegratedintegrated
Graphics card seriesAMD RadeonAMD Radeon
Graphics card modelVega 8Vega 8
3DMark0611098 points12213 points
3DMark Vantage P10294 points10294 points
Storage
Drive typeSSD M.2 NVMeSSD M.2
Drive capacity256 GB256 GB
Connections
Connection ports
HDMI
HDMI
Card reader
 /SD/
USB 2.02
USB 3.2 gen121 pc
USB C 3.2 gen11 pc
Alternate Mode
LAN (RJ-45)1 Gbps1 Gbps
Multimedia
Webcam1280x720 (HD)1280x720 (HD)
Camera shutter
Speakers22
Brand acousticsBang & Olufsen
Security
 
kensington / Noble lock
fingerprint scanner
kensington / Noble lock
Keyboard
Backlightwhitewhite
Key designisland typeisland type
Num block
Input devicetouchpadtouchpad
Battery
Battery capacity4200 mAh
Battery capacity41 W*h48 W*h
Battery voltage11.4 V
Operating time8.75 h7 h
Powered by USB-C (Power Delivery)
Fast charge
 /50% in 45 minutes/
General
Preinstalled OSWindows 10 HomeLinux
Materialaluminium / plasticaluminium / plastic
Dimensions (WxDxT)362x246x18 mm363x248x18 mm
Weight1.85 kg1.9 kg
Color
Added to E-Catalogmarch 2020january 2020

Surface treatment

Glossy. A glossy surface improves the overall picture quality: other things being equal, the picture on such a screen looks brighter and more colorful than on a matte one. On the other hand, pollution is very noticeable on such a surface, and in bright external lighting, a lot of glare appears on it, which can greatly interfere with viewing. Therefore, instead of the classic gloss, laptops are increasingly using an anti-reflective version of such a coating (see below). Nevertheless, this option still does not lose popularity: it is somewhat cheaper than the “anti-glare”, and in soft, relatively dim lighting, it can even provide a more pleasing image to the eye.

Matte. Matte finish is inexpensive and does not form glare even from fairly bright lighting. On the other hand, the picture on such a screen is noticeably dimmer than on a similar glossy display. However, this moment can be compensated by various design solutions (primarily a good margin of brightness); so this option can be found in all categories of modern laptops — from low-cost models for working with documents to top gaming configurations.

Glossy (anti-glare). A variation on the glossy finish described above, designed to reduce glare from external light sources. Such screens really glare noticeably less than traditional glossy ones (or even do not give glare at all); at the same time, in...terms of image quality, they are at least superior to matte ones. So it is this type of coating that is most popular nowadays.

Brightness

The maximum brightness that a laptop screen can provide.

The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.

As for specific values, many modern laptops have a brightness of 250 – 300 nt and even lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least 300 – 350 nt. And in the most advanced models, this parameter can be 350 – 400 nt and even more.

Colour gamut (NTSC)

The colour gamut of the laptop matrix according to the NTSC colour model.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

Specifically, NTSC is one of the first colour models created back in 1953 for colour television. It is not used in the production of modern LCD matrices, but is used to describe and compare them. NTSC covers a wider range of colours than sRGB, which is standard in computer technology; therefore, even a small number of percentages in this case corresponds to a fairly wide coverage. For example, a value of 72% or more in NTSC is already considered a good value for use in design and graphics. At the same time, the same NTSC figures on different screens may correspond to different sRGB figures; so if accurate colour reproduction is decisive for you, these details should be clarified before buying.

Also note that among individual monitors, it is easier to find a screen with a wide colour gamut; while it will also cost less than a laptop with similar display characteristics. So choosing a laptop with a h...igh-end screen makes sense mainly when portability is as important to you as high-quality colour reproduction.

3DMark06

The result shown by the laptop processor in 3DMark06.

This test is primarily focused on testing performance in games — in particular, the ability of the processor to process advanced graphics and artificial intelligence elements. Test scores are reported as scores; the higher this number, the higher the performance of the tested chip. Good 3DMark06 results are especially important for gaming laptops.

Passmark CPU Mark

The result shown by the laptop processor in the Passmark CPU Mark test.

Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).

3DMark06

The result shown by the laptop's graphics card in 3DMark06.

This test primarily determines how well a graphics card handles intensive workloads, in particular, with detailed 3D graphics. The test result is indicated in points; the more points, the higher the performance of the video adapter. Good 3DMark06 scores are especially important for gaming laptops and advanced workstations. However, it is difficult to call them reliable, since measurements are made on video cards with different TDPs and an overall average score is given. Thus, your laptop can have either more or less than the specified result - it all depends on the TDP of the installed video card.

Drive type

The type of drive that is installed in the laptop.

Classic hard drives (HDD) in modern laptops are quite rare in their pure form. Instead, solid-state SSD modules are becoming more common, including in HDD+SSD and SSHD+SSD combinations. Also note that among such modules, M.2 SSDs are very common, which can also support NVMe and/or belong to the advanced Intel Optane series. Here are the main features of these options in various combinations (as well as other drive options that can be found in modern laptops):

— HDD. Traditional hard disk, not complemented by any other type of storage. HDDs are notable for their low cost per gigabyte of capacity, which allows you to create very capacious and at the same time quite inexpensive media. On the other hand, such storages are considered less perfect than SSDs: in particular, they are rather slow, and they also do not withstand shocks and shocks (the latter is especially true in light of the fact that laptops are originally portable devices). Therefore, this option is quite rare nowadays, mainly among low-cost configurations.

— SSD. Solid-state memory based on flash technology. In general, drives of this type are noticeably more expensive than HDDs of a similar volume, but they have a number of advan...tages over them — first of all, this is a high speed of operation, as well as the ability to endure quite strong shocks and vibrations without any problems. However, we emphasize that in this case we are talking about SSDs of the original format that do not use the M.2 interface, do not belong to the Optane series and are not eMMC or UFS modules (see below for all these features). This is the simplest and most affordable type of flash memory — in particular, it usually uses a SATA interface connection, which does not allow you to realize the full potential of such memory. On the other hand, even “regular” SSD modules still work noticeably faster than HDDs, and they are noticeably cheaper than more advanced solutions.

— SSD M.2. SSD module using M.2 connector. For SSDs in general, see above; and the M.2 connector was specifically designed for advanced yet tiny internal components, including solid state drives. One of the features of such a connection is that it is most often carried out according to the PCI-E standard — this provides a high data transfer rate (up to 8 GB / s, potentially more) and allows you to use all the features of SSD drives. At the same time, there are M.2 modules that work on the older SATA interface — its speed does not exceed 600 MB / s, but such equipment is cheaper than modules with M.2 PCI-E. For details, see "M.2 drive interface" — it is this item that allows you to evaluate the specific capabilities of SSD M.2.

— SSD M.2 Optane. An M.2 SSD (see above) belonging to the Intel Optane series. The main feature of such modules is the use of 3D Xpoint technology — it differs significantly from NAND, on which most conventional SSD modules are built. In particular, 3D Xpoint allows you to access data at the level of individual cells and do without some additional operations, which speeds up work and reduces delays. In addition, such memory is much more durable. Its main drawback is a somewhat high cost. It is also worth noting that the superiority of Optane over more traditional SSD modules is most noticeable at the so-called low queue depth — that is, with a small load on the drive, when a small number of requests are received at the same time. However, most everyday tasks (working with documents, surfing the web, relatively undemanding games) are implemented in this mode, so this moment can be considered an advantage — especially since the superiority of Optane, although it decreases, does not disappear with increasing load.

— SSD M.2 NVMe. NVMe is a data transfer standard designed specifically for solid-state SSD memory. It uses the PCI-E bus and allows you to maximize the potential of such memory, significantly increasing the data exchange speed. This can be either the only drive on board or an addition to an HDD or SSHD. Initially, it was believed that NVMe makes sense to be used mainly on high-performance systems, in particular gaming. However, the development and cheaper technology has led to the fact that such drives are also found in simpler laptops.

— HDD+SSD. The presence in the laptop of two separate drives — HDD and a regular SSD (not M.2, not Optane). The advantages and disadvantages of these types of drives are described in detail above; and their combination in one system allows you to combine the advantages and partially compensate for the shortcomings. SSD in such cases usually has a noticeably smaller volume than HDD, and is used to store data for which high access speed is critical: the operating system, work programs, etc. In turn, it is convenient to store information on a hard disk that takes up a significant volume and at the same time does not require a special access speed; a classic example is multimedia files and documents. In addition, the solid state module can be used as a high-speed cache for a hard drive — similar to the SSHD described below. However, this usually requires special software settings, while the "two separate drives" mode is usually available by default.
It is also worth noting that modern laptops are increasingly using HDD bundles not with conventional SSDs, but with more advanced M.2 modules (including M.2 Optane). However, this option also continues to be used — mainly among relatively inexpensive configurations.

— SSHD. A combination drive that combines a hard disk drive (HDD) and a solid state drive (SSD). It differs from the HDD + SSD bundle described above in two ways. Firstly, both carriers are in the same case and are perceived by the system as a single unit. Secondly, the hard drive is mainly used directly for data storage, and SSD memory usually performs an auxiliary function — it works as a high-speed cache for the HDD. In fact, it looks like this: the data from the hard drive, which the user most often accesses, is copied to the SSD and, at the next access, is loaded from the solid state media, and not from the HDD. This allows you to significantly speed up the work compared to conventional hard drives. However in terms of speed, such “hybrids” are still inferior even to conventional SSDs, not to mention M.2 and Optane solutions — but they are much cheaper.

— HDD+SSD M.2. Combination of a classic hard drive with an M.2 solid-state SSD module. For more information about this combination, see "HDD + SSD": almost everything stated there is also relevant for this case, adjusted for the fact that M.2 SSDs are able to provide higher speeds (see also above — in p. " SSD M.2").

— HDD + Optane M.2. Combining a classic hard drive with an Intel Optane M.2 solid-state SSD module. This combination is generally similar to the “HDD + SSD” combination (see above), adjusted for the advanced capabilities of Optane drives (see also “SSD M.2 Optane” above).

— SSHD+SSD M.2. Combining an SSHD with an M.2 SSD. In general, it is similar to the “HDD + SSD M.2” combination (see above), adjusted for the fact that instead of a regular hard drive, a more advanced and high-speed hybrid drive is used (see also above about it). This further increases the cost, but improves performance.

— eMMC. A type of solid-state drive, originally used as built-in permanent memory for smartphones and tablets, but has recently been installed in laptops. It differs from SSD (see above), on the one hand, by lower cost and good energy efficiency, on the other hand, by lower speed and reliability. Thus, eMMC is now found mainly among transformers and laptop-tablets (see "Type") — for them, low power consumption is more important than maximum performance. Also note that such drives are usually made built-in and do not require replacement.

— HDD + eMMC. Combining a classic hard drive with an eMMC solid state module. The features of each type of drive are described in detail above, and their combination is used mainly in laptop-tablet devices (see "Type"). At the same time, the eMMC drive is installed at the top of the device and is designed to store the operating system and the most important data that needs constant access; and the HDD, located in the lower half, is used as additional storage for large amounts of information (for example, movie collections).

— SSD M.2 + eMMC. The combination of two solid-state modules in one laptop — SSD M.2 and eMMC. See above for details on the features of both types of memory, and their combination is a rather exotic option. It is mainly used to increase the total amount of solid-state memory without a significant increase in cost (remember, eMMC is cheaper than an M.2 SSD of the same volume). In addition, while the eMMC module is usually made built-in, the M.2 SSD is removable by definition, and can be replaced with another drive if necessary.

— UFS. Another type of solid-state memory, originally designed for smartphones and tablets — along with the eMMC described above. It differs from the latter both in high efficiency and increased cost. Thus, such drives are extremely rare among laptops: where eMMC capabilities are not enough, manufacturers usually use full-fledged SSDs.

Card reader

A device for working with removable memory cards. Usually, it looks like a characteristic slot right on the laptop case, into which the media is inserted. There are different standards for memory cards, a list of compatible standards is indicated in the note to this item. It is worth noting here that for modern laptops it is almost mandatory to support the SD format and its modifications — SD HC, often also SD XC; other options may also be envisaged, but they have not received such distribution. Anyway, this feature is convenient because memory cards are widely used in other types of electronics: for example, SD is the generally accepted standard in digital cameras, and microSD (compatible with SD slots through simple adapters) is used in smartphones. Accordingly, the presence of a card reader greatly facilitates the exchange of data between a laptop and external devices.

USB 2.0

Number of USB 2.0 ports provided in the laptop.

USB of all versions is the most popular modern interface for connecting various peripherals to computer - from keyboards, mice and flash drives to very original devices. It can also be used to charge smartphones and other gadgets. The more USB ports laptop has, the more peripherals you can connect to it without using splitters. Specifically, USB 2.0 is the earliest version found in modern laptops. It uses regular full-size connector and provides speeds of up to 480 Mbit. In light of the emergence of faster and more advanced versions of USB 2.0, it is considered obsolete; more and more laptops are being produced that do not have such connectors at all. At the same time, this interface is still far from completely disappearing, especially since its capabilities are quite sufficient for many peripheral devices.
HP Pavilion 15-cw1000 often compared
Acer Aspire 5 A515-43 often compared