Dark mode
United Kingdom
Catalog   /   Computing   /   Components   /   PSUs

Comparison Zalman Wattbit XE ZM500-XE vs Sven PU-AN PU-600AN

Add to comparison
Zalman Wattbit XE ZM500-XE
Sven PU-AN PU-600AN
Zalman Wattbit XE ZM500-XESven PU-AN PU-600AN
Outdated ProductOutdated Product
User reviews
2
0
0
4
TOP sellers
Power500 W600 W
Form factorATXATX
Specs
PFCpassiveactive
Efficiency83 %
Cooling system1 fan1 fan
Fan size120 mm120 mm
Certificationwithout 80+without 80+
ATX12V version2.31
Power connectors
MB/CPU power supply24+8 (4+4) pin24+8 (4+4) pin
SATA44
MOLEX32
PCI-E 6pin1
PCI-E 8pin (6+2)12
Floppy
Cable systemnon-modularnon-modular
Braided wires
Cable length
MB500 mm
CPU600 mm
SATA450 mm
PCI-E450 mm
Max. power
+3.3V16 А
+5V15 А
+12V120 А
+12V220 А
-12V0.3 А
+5Vsb2 А
+12V456 W
+3.3V +5V120 W
-12V3.6 W
+5Vsb10 W
General
Over voltage protection (OVP)
Over power protection (OPP)
Short circuit protection (SCP)
ProtectionUVP
Manufacturer's warranty2 years
Dimensions (HxWxD)86x150x140 mm150х85x140 mm
Weight1.69 kg1.1 kg
Added to E-Catalogaugust 2019september 2018

Power

The output power of the power supply, in other words, is the maximum power that it is capable of delivering to the system. For the computer to operate efficiently, the power supply must be greater than the total power consumption of the system at maximum load. The latter can be calculated by summing the power of individual components, however, in general, for office configurations , about 400 W450 W is considered sufficient, for medium gaming — about 600 W( 500 W, 550 W, 650 W, 700 W, 750 W), and for the top ones — power of 800 W and above ( 850 W, 1000 W and even more than 1 kW).

PFC

The type of power factor correction (PFC) provided in the power supply.

The power consumed by the PSU is divided into active and reactive; the first goes to perform useful work, the second does not produce such work and is dissipated in the form of heat. The power factor is the ratio of active power to the total power consumed; the closer it is to one, the more efficient the PSU.

PFC correction is applied to improve the power factor. It can be done passively or actively. The first option provides the presence of a coil (choke), which partly compensates for the operation of the reactive components of the PSU; such a correction is simple and inexpensive to implement, but not very effective. The active method, in turn, provides the presence of a specialized controller. It is more expensive, but the power factor in such PSUs can reach 0.95 or more; in addition, the device is more resistant to voltage drops.

In general, for use in a home or small office, passive correction is more than enough; active PSUs should be specifically looked for mainly in cases where we are talking about numerous computers connected to a powerful UPS.

Efficiency

Efficiency, in this case — the ratio of the power of the power supply (see "Power") to its power consumption. The higher the efficiency, the more efficient the power supply, the less energy it consumes from the network at the same output power, and the cheaper it is to operate. Efficiency may differ depending on the load; the characteristics can indicate both the minimum efficiency and its value at an average load (50%).

It should be noted that compliance with one or another level of 80PLUS efficiency directly depends on this indicator (for more details, see "Certificate").

ATX12V version

A standard for power supplies that supplements the ATX specifications regarding power supply along the 12 V line. Introduced into use since the time of the Intel Pentium 4 processor. In the first series of the standard, the +5 V line was mainly used; from version 2.0, the +12 V line was introduced to fully power the components computer. Also in the second generation, a 24-pin power connector appeared, used in most modern motherboards.

MOLEX

The number of Molex (IDE) connectors provided in the design of the power supply.

Initially, such a connector was intended to power peripherals for the IDE interface, primarily hard drives. And although the IDE itself is completely obsolete today and is not used in new components, however, the Molex power connector continues to be installed in power supplies, and almost without fail. Almost any modern PSU has at least 1 – 2 of these connectors, and in high-end models this number can be 7 or more. This situation is due to the fact that Molex IDE is a fairly universal standard, and with the help of the simplest adapters, components with a different power interface can be powered from it. For example, there are Molex - SATA adapters for drives, Molex - 6 pin for video cards, etc.

PCI-E 6pin

The number of 6-pin (6pin) PCI-E power connectors provided in the power supply.

Such connectors are used for additional power supply of those types of internal peripherals for which 75 W is no longer enough, supplied directly through the PCI-E socket on the motherboard (video cards are a typical example). The 6-pin connector on the power supply additionally provides another 75 W — thus, when using this connector, it becomes possible to connect boards with a power consumption of up to 150 W.

Note that some video cards have several connectors for additional power at once. Thus, the PSU can provide both one PCI-E 6pin plug, and two such connectors. However, in general, this type of plug is used quite rarely — this is due to the spread of a more convenient and versatile 8pin connector in the “6 + 2” format, which can be used both as six- and eight-pin (see below for more details).

PCI-E 8pin (6+2)

The number of PCI-E 8pin (6+2) power connectors provided in the PSU design.

Additional PCI-E power connectors (all formats) are used to additionally power those types of internal peripherals for which 75 W is no longer enough, supplied directly through the PCI-E socket on the motherboard (video cards are a typical example). In PC components, there are two types of such connectors — 6pin, providing up to 75 W of additional power, and 8pin, giving up to 150 W. And the 8pin (6 + 2) plugs used in power supplies are universal: they can work with both 6-pin and 8-pin connectors on the expansion board. Therefore, this type of plug is the most popular in modern PSUs.

As for the quantity, on the market you can find models for 1 PCI-E 8pin (6 + 2) connector, for 2 such connectors, for 4 connectors, and in some cases — for 6 or more. Several of these plugs can be useful, for example, when connecting several video cards — or for a powerful high-performance video adapter equipped with several PCI-E additional power connectors.

Floppy

The presence of at least one Floppy power connector in the PSU.

Initially, this connector was intended to power floppy disk drives, hence the name. It is also known under the designation "mini-Molex". Anyway, this standard is generally considered obsolete, but it is still used by some specific types of components, and therefore continues to be used in power supplies.

Braided wires

The presence of a braid in the complete wires of the system unit — for all or at least for some.

This feature has a positive effect on reliability, making the wire as resistant as possible to bending, abrasion, strong pressure and other similar influences; it also provides additional protection against accidental contact with sharp objects (for example, when repairing a PC). The disadvantages of braided wires, in addition to increased cost, are also increased thickness and greater rigidity than similar cables in conventional insulation. This can create some difficulties in organizing space inside the system unit.
Zalman Wattbit XE often compared