United Kingdom
Catalog   /   Computing   /   Components   /   Sound Cards

Comparison sound Cards

Save List
Add to comparison
Sennheiser GSX 1000
Sennheiser GSX 1000
Compare prices 2
TOP sellers
Main
Informative display. Realization of virtual sound. Plug-n-play mode. Built-in equalizer. Wide frequency range. Built-in DAC.
Featuresgaming
Specs
Typeexternal
InterfaceUSB
Channels7.1
DAC
DAC resolution24 bit
Max. sampling rate96 kHz
More features
headphones amplifier
external control module
Inputs
mini-Jack (3.5 mm)
/for microphone/
Outputs
mini-Jack (3.5 mm)1
Added to E-Catalogmarch 2017

Features

Ordinary. This category includes all sound cards that do not have a pronounced specialization and do not belong to any of the types described below. Usually, they have a set of characteristics of an entry-level or intermediate level and are designed for simple everyday tasks: listening to music and game sound through ordinary speakers or headphones, communicating on the Web through a microphone, etc. Conventional sound cards are equipped with both digital-to-analogue and analogue-to-digital converters, they can be either internal or external.

Audiophile (Hi-Fi). Sound cards designed for lovers of high-quality sound; they can also be useful for professionals who are engaged in professional audio processing and need the most accurate reproduction of the received signal. Accordingly, models of this type are distinguished by high build quality, advanced components, as well as the presence of additional equipment, an abundance of interfaces and advanced customization options (both software and hardware, including even the ability to replace individual circuit components). However, these cards cost accordingly.

Gamer's. Sound cards originally designed as components for advanced gaming systems. Accordingly, the main purpose of such models is high-quality transmission of game sound, including three-dimensional and multichannel. Typically, gaming audio ca...rds are equipped with advanced DACs and support various special standards (see below); in addition, they may have additional equipment such as remote control modules (see below). The vast majority of models of this type are made internal, but they often have a rather original design (which is useful for modding enthusiasts who use transparent cases).

— CAP. Abbreviation for "Digital to Analogue Converter". Usually, this term refers to the constituent element of a sound card, but in this case it refers to a separate type of audio cards, the distinguishing feature of which is the absence of an analogue-to-digital converter (ADC). Accordingly, DACs are only capable of transmitting sound from a computer to headphones, speakers, etc., and cannot be used to digitize sound from a microphone or other external signal source. Note that this category includes a variety of models — from the simplest USB-headphone adapters, the size of a flash drive, to advanced audiophile-class solutions.

Audio interface. A kind of opposite to the DAC described above: audio interfaces are designed primarily to digitize the sound coming to the input (for example, from a microphone or an electric guitar). Accordingly, they are not only necessarily equipped with analogue-to-digital converters — usually, these ADCs have very advanced characteristics and extensive sound tuning capabilities (and in some models even hardware switches are provided for this). At the same time, audio interfaces can also work in the digital-to-analogue audio conversion mode (in other words, to output sound to headphones/speakers). The cost of such devices is usually quite high, so it makes sense to purchase them only for those who plan to work a lot with sound recording.

Type

The type determines how the sound card is installed and connected.

Internal. Such models are designed to work as a permanent component of the system. They are installed in the computer's system unit, in a slot on the motherboard (PCI or PCIe, see "Connection interface") in such a way that usually only a panel with inputs and outputs is located outside. One of the main advantages of internal cards is compactness — they do not take up space outside and practically do not affect the dimensions of the system unit. At the same time, in terms of functionality, such models can vary from the simplest low-cost options to advanced professional solutions. On the other hand, in connection, internal cards are less versatile and more complex than external cards: this requires at least disassembling the PC case, and installation options are limited both by the characteristics of the motherboard and by the availability of space inside the case. It is also believed that cards of this type are more susceptible to electromagnetic interference, as they are in close proximity to the electronic components of the computer.

External. As the name implies, models of this type are located outside the PC case during operation and use the appropriate connection interfaces — USB or FireWire (see below). Of the advantages of external cards, first of all, it is worth noting the convenience of connection: after al...l, connecting a plug to an external socket is much easier and faster than fiddling with the hardware of the case. Due to this, one card can be easily used on several computers, reconnecting if necessary. In addition, they are indispensable for laptops and some desktop computers, where the installation of internal audio cards is not structurally provided. Another advantage is the remoteness from the hardware of the computer, which reduces the level of interference. The main disadvantage of this type of cards is the need for additional space for them near the computer; while more advanced models, usually, take up more space. In addition, for devices with additional power (see below), you will need a separate outlet.

Interface

The main interface used to connect a sound card to a computer or other device.

Like the sound cards themselves, the interfaces used in them are divided into internal ( PCI, PCI-E USB, USB C, FireWire, Thunderbolt, 3.5 mm mini-jack, Bluetooth). Here is a more detailed description of each of these options:

— PCI-E. The main modern interface for connecting internal peripherals (including sound cards) to computer motherboards. Used in most internal type models (see above). The main advantage of solutions with PCI-E is that connectors for their connection can be found on almost any modern motherboard. True, these connectors may be needed for other components - a video card, a TV tuner, or even an SSD drive; however, even on the simplest motherboards, there are usually several PCI-E slots, so this point cannot be called a serious drawback.

— PCI. Interface for connecting expansion boards to the PC motherboard. It is the forerunner of PCI-E, has significantly lower bandwidth and more limited features, so is generally obsolete. Nevertheless, in our time, motherboards with such connectors and sound cards for the PCI interface (including quite advanced ones) continue to be produced. This is due to the fact that a relatively low bandwidth...is sufficient to work with sound; and installing an audio card in the PCI slot leaves PCI-E slots free, which may be required for components that are more demanding on connection speed. In any case, before buying such a sound card, it does not hurt to make sure that the "motherboard" has a connector for connecting it.

— USB. Connection via standard USB port. Until recently, this was the most popular interface for external peripherals, found in almost all PCs and laptops. It was under USB that most external sound cards were made. The disadvantage of this connection method is that USB connectors may be required for other devices, which creates problems with a small number of ports and an abundance of peripherals. On the other hand, such situations do not occur so often, and to solve them, it is enough to have a USB splitter (hub) on hand.

Separately, we note that the full-sized USB sockets in modern PCs and laptops have been replaced by more compact USB C (see below).

- USB C. Peripheral connector with a symmetrical contact group, which is often replaced by full-size USB ports on board modern PCs and laptops. Many new models of external sound cards are made for this interface. The exception to the rule are only individual instances for Thunderbolt (see below) - for them, it is Thunderbolt, and not USB C, that is indicated as a peripheral connection connector.

— Thunderbolt. A universal peripheral connector used primarily in Apple computers and laptops. It should be borne in mind that different generations of Thunderbolt differ in the type of physical connector: versions v1 and v2 use a miniDisplayPort socket, version v3 uses a USB C socket. So, when choosing a sound card with such a connection, you must definitely clarify this point. On the other hand, versions of Thunderbolt with different connectors are quite mutually compatible through the appropriate adapters.

— FireWire. It is also IEEE 1394. An interface for external devices, which some time ago enjoyed a certain popularity, but today it is practically obsolete.

- 3.5 mm (mini-jack). Mini-jack is one of the most common audio connectors. However, it is usually provided as one of the audio inputs (see below) and is rarely used as the main interface for connecting a sound card to an external device. Such a connection is found mainly in specialized gaming models, including those designed for use with consoles. At the same time, in such models, the mini-jack connector can be made combined, with the ability to connect both a linear (analog) signal via a conventional electrical wire, and an optical (digital) signal via a TOSLINK cable. Recall that the optical interface is notable for its complete insensitivity to external interference, it allows you to transmit multi-channel sound, however, cables for such a connection require care in handling.

— Bluetooth. Wireless connection according to the Bluetooth standard. It is found mainly in models designed for use with smartphones and tablets - there are few wired connectors in such gadgets, but Bluetooth modules are almost guaranteed. True, initially, with such a transmission, the sound is greatly compressed, which noticeably affects its quality; however, modern Bluetooth audio cards usually include support for aptX to remedy this shortcoming. Of course, the signal source must also support this technology - you should make sure of this before buying.

Channels

The most advanced multi-channel audio format that a sound card is capable of outputting.

2. Standard stereo sound on two channels — left and right. This format allows you to provide a sense of surround sound (especially when using headphones), which is quite enough for most simple tasks. However, it noticeably loses to multi-channel sound in terms of the "immersion effect", which can be critical for demanding gamers and audiophiles.

5.1. The classic and most popular multi-channel surround sound format today: a centre channel, two front and two rear channels allow you to achieve a full-fledged “surround effect”, and a separate subwoofer channel provides rich bass sound.

7.1. The 7.1 format differs from 5.1 by the presence of two additional channels. There are several options for localizing these channels — for example, a pair of side speakers, a pair of additional speakers above the front ones, etc. Anyway, the 7.1 format provides a more reliable surround sound transmission than 5.1, but such cards are more expensive, and there is less specialized content for 7.1.

When choosing a sound card by the number of channels, it is worth considering such moments. Firstly, multi-channel options are capable of producing sound in simpler formats (for example, a 7.1 card can be used for 5.1 acoustics), and stereo sound output is support...ed by all models in general. Secondly, modern multimedia software (in particular, codecs) allows you to output multi-channel audio through a card with fewer channels — for example, play 5.1 sound through a two-channel card with stereo speakers without quality loss. Thirdly, for the full-fledged operation of multi-channel sound, you will need not only a card, but also appropriate acoustics; therefore, it makes no sense to specifically look for a multi-channel model if you plan to use exclusively stereo speakers.

DAC resolution

The bit depth of the digital-to-analogue converter (DAC) of the sound card. In this case, DAC refers to a part of the circuit that converts digital sound data (machine code) into analogue pulses that are fed directly to an external device — speakers, headphones, etc. The bit depth is one of the main parameters (along with the sampling frequency) that describes the quality of the DAC: the higher it is, the more reliable the sound will be reproduced, the less distortion will be introduced into it during conversion.

16-bit DACs usually have entry-level sound cards — this is enough for good sound quality. In other cases, 24-bit converters are most common, and even for advanced models, in particular gaming ones (see "View"), they are almost mandatory.

Max. sampling rate

The highest sampling rate provided by the digital-to-analogue converter (DAC) of the audio card. For more details on the role of the DAC, see paragraph "Bit depth" above. Here we note that the quality of its work directly depends on the sampling frequency: the higher it is, the less distortion occurs when converting sound.

Usually in sound cards there are standard values for the maximum sampling rate:

44.1 kHz — corresponds to the sound quality of Audio CD;
48 kHz — DVD;
96 kHz — DVD-Audio 5.1;
192 kHz — DVD-Audio 2.0 (two-channel audio has a higher sampling rate than multi-channel audio for a number of reasons), the highest value in modern consumer-grade sound cards.

Another specific point is that the quality of sound played on a computer cannot be higher than the capabilities of a sound card. In other words, if an audio file is recorded at a higher sampling rate than the audio card can provide, its sound quality will be reduced: for example, on a 44.1 kHz card, even DVD-Audio sound will sound like an Audio CD. Therefore, if you want to fully enjoy high-quality sound, you should choose a model with a high sampling rate.

More features

— Headphone Amplifier. The presence of a separate headphone amplifier in the design of the sound card. Such equipment allows at least to improve the overall sound of the “ears”, as well as to implement various additional settings for such sound (for example, a separate volume control). And some headphones — primarily high-impedance Hi-Fi models — in principle cannot be used without special amplifiers.

— External control module. The presence of an external control module in the design of the sound card. Such a module is actually a control panel with a wired connection; it doesn't give you the freedom of movement that a wireless remote control does (see below), but it's cheaper and often more convenient. So, the control module does not have to be in direct line of sight with respect to the audio card, and the length of the wire is often enough to place the device at the user's hand. However the set of adjustments placed on the external unit is usually limited to the most basic settings; however, even this, usually, is quite enough for comfortable use. In addition, the control unit often provides additional connectors for connecting headphones and a microphone. Among other things, this feature is especially convenient in games — it allows you to adjust the sound without distracting from the game itself. However, other types of sound cards can also be equipped with external modules (see "View").
...
— Remote control. A remote control is included with the sound card. Do not confuse this function with the external control module described above: in this case, we mean a classic wireless IR remote control, like those used in TVs. Such a device does not necessarily cover all the capabilities of the audio adapter, however, the range of functions of the remote control can be quite extensive. On the other hand, the need to control a sound card from a distance is extremely rare, and in most cases, the mentioned external module is enough for this. So models with a remote control are not widely used.

Exit to the front panel. Ability to connect an internal sound card (see "Type") to the connectors on the front panel of the PC. To do this, a special connector (or several connectors) is provided on the board, which is connected to the corresponding connector (s) using a wire. The convenience of this feature is obvious: in desktop computers, the front panel is located closest to the user, and it is to it that it is easiest to connect peripherals that involve frequent plugging and unplugging, such as headphones and microphones. Actually, connectors for such devices are most often displayed on the front panel.

mini-Jack (3.5 mm)

The number of inputs in the design of the sound card using 3.5 mm mini-Jack connectors. This connector, usually used to transmit an analogue signal, is one of the most popular in modern audio technology. Speaking of inputs, it's worth noting that most computer microphones are designed to plug into the 3.5mm jack; this also applies to separate microphone plugs on headsets. At the same time, the specific purpose of the mini-jack sockets in different sound cards may be different; Moreover, in some models, the same socket can be reconfigured and even change its purpose (from input to output and vice versa). These points, usually, are specified in the characteristics.

Using a simple adapter, you can also connect a 6.35 mm plug (Jack) to the 3.5 mm jack.

mini-Jack (3.5 mm)

The number of outputs with 3.5 mm mini-Jack connectors in the design of the sound card. It is this connector that is used by the vast majority of modern computer headphones and speakers of all price categories (although it is relatively rare in top-end technology), and it is very popular in other consumer-class audio devices. Therefore, almost all entry-level and mid-level sound cards have at least one 3.5 mm jack; the absence of such outputs is typical for specialized models (for example, DAC, see "View"). Also note that a single mini-jack output can work with a maximum of two channels, however, this interface is also used in multi-channel sound systems — in this case, the audio card is equipped with several connectors, each of which is responsible for its own part of the system. For example, for 5.1 systems, one connector is allocated to the centre, one to a pair of front channels, one to a pair of rear channels, and one to a subwoofer.

As with 3.5mm inputs (see above), this type of output can be used in a variety of ways and can even be configurable.