United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Mobile Phones

Comparison Doogee S100 256 GB / 12 GB vs Doogee S100 Pro 256 GB / 12 GB

Add to comparison
Doogee S100 256 GB / 12 GB
Doogee S100 Pro 256 GB / 12 GB
Doogee S100 256 GB / 12 GBDoogee S100 Pro 256 GB / 12 GB
Compare prices 1Compare prices 1
TOP sellers
Main
8 GB RAM expansion function. Customizable side button.
RAM expansion function up to 20 GB. Powerful hiking flashlight 130 lm. Customizable side button.
Display
Main display
6.58 "
2408х1080 (20:9)
401 ppi
IPS
120 Hz
Gorilla Glass v5
6.58 "
2408х1080 (20:9)
401 ppi
IPS
120 Hz
Gorilla Glass v5
Brightness480 nit
Display-to-body ratio70 %70 %
Hardware
Operating systemAndroid 12.0Android 12.0
CPU modelHelio G99Helio G99
CPU frequency2.2 GHz2.2 GHz
CPU cores88
Processor rating AnTuTu2020
GPUARM Mali-G57 MC2ARM Mali-G57 MC2
RAM12 GB12 GB
RAM typeLPDDR4xLPDDR4x
Memory storage256 GB256 GB
Storage typeUFS 2.2UFS 2.2
Memory card slotmicroSDmicroSD
Max. memory card storage2048 GB2048 GB
Liquid cooling
SIM slotsSIM + SIM/microSD2 SIM
SIM card typenano-SIMnano-SIM
Test results
AnTuTu Benchmark387721 score(s)
Geekbench1997 score(s)
3DMark Gamer's Benchmark1222 score(s)
Sling Shot Extreme (OpenGL ES 3.1 / METAL)2584 score
Main camera
Lenses3 modules3 modules
Main lens
108 MP
f/1.8
90 °
Samsung S5KHM2SP03
108 MP
f/1.8
90 °
Samsung HM2, 1/1.52"
Ultra wide lens
16 MP
f/2.2
130 °
16 MP
f/2.2
130 °
Additional lens
night vision, 20 MP, f/1.8, Sony IMX350 /2 IR emitters/
night vision, 20 MP, f/1.8, 80°, Sony IMX350 /2 IR emitters/
Full HD (1080p)30 fps30 fps
4K30 fps
Flash
Front camera
Form factorteardropteardrop
Main selfie lens
32 MP /Sony IMX616-AAJH5-C/
32 MP
Aperturef/2.0f/2.0
Field of view90 °
Full HD (1080p)30 fps30 fps
Connections and communication
Cellular technology
4G (LTE)
VoLTE
CDMA
4G (LTE)
 
CDMA
Connectivity technology
Wi-Fi 6 (802.11ax)
Bluetooth v 5.0
NFC
Wi-Fi 6 (802.11ax)
Bluetooth v 5.0
NFC
Inputs & outputs
USB C 2.0
USB C 2.0
Features and navigation
Features
side fingerprint scanner
stereo
FM receiver
notification indicator
 
gyroscope
flashlight
light sensor
side fingerprint scanner
 
FM receiver
notification indicator
noise cancellation
gyroscope
flashlight
light sensor
Navigation
aGPS
GPS module
Dual GPS /L1+L5/
GLONASS
Galileo
digital compass
aGPS
GPS module
Dual GPS /L1+L5/
GLONASS
Galileo
digital compass
Power supply
Battery capacity10800 mAh22000 mAh
Battery life (PCMark)18.25 h
Fast chargingPower DeliveryPower Delivery
Charger power66 W33 W
Charging time60% in 30 min
Wireless charging
General
WaterproofIP68/IP69KIP68/IP69K
Shock protection
MIL-STD-810
 /MIL-STD-810H/
 /MIL-STD-810H/
Bezel/back cover materialplasticmetal/plastic
Back covercorrugatedcorrugated
What's in the box?
 
screen protector
charger /66 Вт/
case
screen protector
charger
Dimensions (HxWxD)178.5x83.1x17.9 mm178.5х83.1х27.3 mm
Weight400 g
Added to E-Catalogfebruary 2023february 2023

Brightness

The maximum brightness in nits provided by the smartphone display.

The brighter the display, the more readable the picture remains on it under intense ambient light (for example, outdoors on a clear sunny day). Also, high brightness is important for the correct displaying of HDR content. However, a large amount of brightness affects the cost and power consumption of the screen. Manufacturers can specify standard, maximum, and peak brightness values. At the same time, an equal sign cannot be put between the maximum and peak brightness. The first indicates the ability of the screen to produce the specified brightness over its entire area, while the peak one — in a limited area and for a short time (mainly for HDR content).

Liquid cooling

The water cooling system of the smartphone is designed to increase the efficiency of heat dissipation. Good cooling allows the smartphone to perform properly at peak loads, without freezes or lags. The use of a liquid radiator makes it possible to improve cooling by an average of 4-6 °C compared to passive coolers. Water cooling is used in high-performance smartphones equipped with a performant CPU and GPU and multiple artificial intelligence co-processors.

Water cooling of a smartphone can have various design implementations. The concept of a radiator filled with refrigerant has gained the greatest popularity. In such a cooler, the liquid evaporates as it heats up and condenses in a separate heat exchanger, after which the liquid again enters the cooling radiator. Of course, if you want to increase cooling efficiency, that will increase the dimensions of the smartphone.

SIM slots

The quantity and types of removable cards (SIM, memory cards) that can be installed in the phone. On E-Catalog this parameter is specified only for devices that allow the installation of more than one SIM card — most often that means 2 SIM cards, however, you can find devices with three or even four corresponding slots.

Initially several slots mean that several phone numbers can be used on one device. Thus it is possible to combine personal and work numbers, separate plans for calls and the Internet, etc. in one device. However modern devices (especially smartphones) often provide the combined design “SIM + SIM / memory card " : one of the slots is intended only for SIM, the second can be used both for a SIM card or for a memory card such as microSD or Nano Memory (see "Memory card slot"). At the same time, there is no separate slot for a memory card in the device, so the user has to choose between the second number and additional storage. Therefore, if you want to use 2 SIM cards and a memory card at the same time, you should pay attention to models where this is directly stated.

It is also worth considering that individual slots may differ in the type of compatible SIM cards; see below for details.

Test results

The test results are specified either by a younger model in a line or a particular model, made for a better understanding performance of phone models if you compare phones against these parameters. For example, the 128 GB model has test results, and the 256 GB model has no information on the network, and in both models you will see the same value that will give an understanding of the overall performance of the device. But if the editorial office has information for each model individually, then each model will have its test results filled out, and the model with bigger RAM will have bigger values.

AnTuTu Benchmark

The result shown by the device when passing the AnTuTu Benchmark performance test.

AnTuTu Benchmark is a comprehensive test designed specifically for mobile devices, primarily smartphones and tablets. It checks the efficiency of the processor, memory, graphics and I/O systems, thus providing a fairly visual impression of the capabilities of the system. The better the result, the more points are given at the end. And high-performance by AnTuTu rating are smartphones that score over 750K points

Like any benchmark, this test does not give absolute accuracy: the same device can show different results, usually with deviations within 5 – 7%. These deviations depend on many factors that are not directly related to the system — from the load of the device with third-party programs to the air temperature during testing. So, it is possible to speak about a significant difference between the two models only if the difference in their indicators goes beyond those 5 – 7%.

Geekbench

The result shown by the device when passing the performance test (benchmark) Geekbench.

Geekbench is a specialized benchmark designed for CPUs. Since version 4.0, the test has also been applied to graphics accelerators; towards the end of 2019, the benchmark was released under the number "5". The characteristics of portable gadgets usually provide data specifically for the CPU. During testing, Geekbench simulates the workloads that occur when performing real-world tasks, and takes into account both the capabilities of a single core and the efficiency of multiple cores running simultaneously. Thanks to this, the final results characterize well the capabilities of the processor in everyday use. In addition, the test is cross-platform and allows you to compare the CPUs of different devices (smartphones, tablets, laptops, PCs). The help information only lists the multi-core test values for CPU.

3DMark Gamer's Benchmark

The result shown by the device when passing the 3DMark Gamer's Benchmark performance test.

3DMark is a series of benchmarks originally designed to test the graphics performance of a device; later, these tests were supplemented by checking the capabilities of the processor. Testing is carried out primarily in terms of performance in games (in fact, the benchmark itself is described as “a game without the ability to influence the process”), however, given that modern games can have very high requirements, 3DMark is a fairly visual tool for assessing the overall performance of the system . And since the latest versions of the test are made cross-platform, it also makes it possible to compare devices under different operating systems and even different classes (for example, smartphones with tablets). The more points this or that model received on this test, the more performant it is.

It is worth noting that the results of any benchmark are usually quite approximate, because. they depend on many factors that are not directly related to the system — from the load of the device with third-party programs and ending with the air temperature during testing. The error due to these factors is usually about 5 – 7 %; therefore, it is possible to speak of a significant difference between the two models only if the difference in their indicators goes beyond those 5 – 7%.

Sling Shot Extreme (OpenGL ES 3.1 / METAL)

The result shown by the phone in the 3DMark Sling Shot Extreme (OpenGL ES 3.1 / METAL) test.

3DMark is a series of benchmarks originally designed to test the GPU performance of a device; later, these tests were supplemented by checking the capabilities of the CPU and RAM in general. Specifically, Sling Shot Extreme is one of the latest versions of 3DMark, released in 2016 for testing high performance devices and gaming smartphones, for which earlier tests are no longer enough. One of the key features of the test is support of resolutions up to 2560x1440 (for predecessors, the maximum resolution did not exceed 1920x1080, or even 1280x720). In addition, as the name suggests, the test supports the OpenGL ES 3.1 (for Android) and Metal API (for iOS) specifications used in modern mobile video chips; and since mid-2019, support of the 64-bit CPU architecture has also been added to it. Thus, 3DMark Sling Shot Extreme allows you to reliably evaluate even the most performant and advanced modern smartphones. At the same time, the assessment is traditionally indicated in points: the more points, the better the result.

The results of any benchmark are usually quite approximate, because they depend on many factors not directly related to the system. The error due to these factors is usually about 5 – 7%; therefore, it is possible to speak of a significant difference between the two models only if the difference in their indicators goes beyond those 5 – 7%.

Main lens

Specifications of the main lens of the rear camera installed in the phone. In models with several lenses (see “Number of lenses”), the main one is responsible for basic shooting capabilities and does not have a pronounced specialization (wide-angle, telephoto, etc.). Four main parameters can be indicated here: resolution, aperture ( high aperture optics are quite common), focal length, additional sensor data.

Resolution(in megapixels, MP)
Resolution of the sensor used for the main lens. Budget options are equipped with a module 8 MP and below, many models have 12 MP camera / 13 MP, also recently a trend towards increasing megapixels has been popular. Often in smartphones you can find the main photomodule at 48 MP, 50 MP< /a>, 64 MP and even 108 MP .

The maximum resolution of the resulting image directly depends on the resolution of the sensor; and the high resolution of the "picture", in turn, allows you to better display fine details. On the other hand, an increase in the number of megapixels in itself can lead to a deterioration in the overall image quality - due to the smaller size of each individual pixel, the noise level increases. As a result,...the direct resolution of the camera has little effect on the quality of the shooting - more depends on the physical size of the matrix, the features of the optics and various design tricks used by the manufacturer.

Aperture
Aperture describes the ability of a lens to transmit light. It is written as a fractional number, for example f/1.9. Moreover, the larger the number in the denominator, the lower the aperture ratio, the less light passes through the optics, all other things being equal. For example, an f/2.6 lens will be “darker” than f/1.9.

High aperture gives the camera a number of advantages. First, it improves the quality of shooting in low light. Secondly, it's possible to shoot at low shutter speeds, minimizing the effect of "stirring" and blurring of moving objects in the frame. Thirdly, with fast optics it is easier to achieve a beautiful background blur ("bokeh") — for example, when shooting portraits.

Focal length(in millimetres)
The focal length is a distance between the sensor and the centre of the lens (focused to infinity), at which the most clear image is obtained on the matrix. However, for smartphones, the specifications indicate not the actual, but the so-called equivalent focal length — a conditional indicator recalculated using special formulas. This indicator can be used to evaluate and compare cameras with different sensor sizes (the actual focal length cannot be used for this, since with a different sensor size the same real focal length will correspond to different viewing angles). (It is also worth saying that the equivalent focal length can be noticeably larger than the thickness of the case — there is nothing unusual in this, since this is a conditional, and not a real indicator).

Anyway, the field of view and the degree of magnification directly depend on the equivalent focal length: a larger focal length gives a smaller field of view and a larger size of individual objects that fall into the frame, and a decrease in this distance, in turn, allows you to cover more space. In most modern smartphones, the focal length of the main camera ranges from 13 to 35 mm; if compared with the optics of traditional cameras, then lenses with equivalent focal length up to 25 mm can be attributed to wide-angle lenses, more than 25 mm — to universal models “with a bias towards wide-angle shooting”. Such values are chosen due the fact that smartphones are often used for shooting in cramped conditions, when a fairly large space needs to fit into the frame at a small distance. Enlargement of the picture, if necessary, is most often carried out digitally — due to the reserve of megapixels on the sensor; but there are also models with optical zoom (see below) — for them, not one value is given, but the entire working range of the equivalent focal length (recall, optical zoom is carried out by changing the focal length).

Field of view(in degrees). It characterizes the size of the area covered by the lens, as well as the size of individual objects "seen" by the camera. The larger this field, the more of the scene gets into the frame, but the smaller the individual objects in the image are. The field of view is directly related to the focal length (see above): increasing this distance narrows the field of view of the lens, and vice versa.

Note that this parameter is generally considered important for professional use of the camera rather than for amateur photography. Therefore, viewing angle data is given mainly for smartphones equipped with advanced cameras — including in order to emphasize the high class of cameras. As for specific values, for the main lens they usually are in the range from 70° to 82° — this corresponds to the general specifics of such optics (universal shooting with an emphasis on general scenes and extensive coverage at short distances).

Additional Sensor Data
Additional information regarding the sensor installed in the main lens. This item can specify both the size (in inches) and the sensor model, and sometimes both parameters at once. Anyway, such data is provided only if the device is equipped with a high-end sensor. With the model, everything is quite simple: knowing the name of the sensor, you can find detailed data on it. The size is worth considering a little more.

The size of the sensor is traditionally indicated in fractional parts of an inch — accordingly, for example, a 1/2.3" sensor will be larger than 1/2.6". Larger sensors are considered more advanced, as they provide better image quality at the same resolution. The logic here is simple - due to the large sensor area, each individual pixel is also larger and gets more light, which improves sensitivity and reduces noise. Of course, the actual image quality will also depend on a number of other parameters, but in general, a larger sensor size usually means a more advanced camera. In advanced photo flagships, you can find matrices with a physical size of 1”, which is comparable to image sensors used in top compact cameras with fixed lenses.
Doogee S100 often compared
Doogee S100 Pro often compared