Dark mode
United Kingdom
Catalog   /   Computing   /   Monitors

Comparison AOC AGON Q27G2S 27 " black vs Asus TUF Gaming VG27AQ1A 27 " black

Add to comparison
AOC AGON Q27G2S 27 "  black
Asus TUF Gaming VG27AQ1A 27 "  black
AOC AGON Q27G2S 27 " blackAsus TUF Gaming VG27AQ1A 27 " black
Compare prices 3Compare prices 4
User reviews
0
0
0
1
0
0
0
1
TOP sellers
Product typegaminggaming
Size27 "27 "
Screen
Panel typeIPSIPS
Surface treatmentanti-glareanti-glare
Resolution2560x1440 (16:9)2560x1440 (16:9)
Pixel size0.23 mm0.23 mm
Response time (GtG)4 ms4 ms
Response time (MPRT)1 ms
Refresh rate165 Hz170 Hz
Vertical viewing angle178 °178 °
Horizontal viewing angle178 °178 °
Brightness350 cd/m²250 cd/m²
Static contrast1 000:11 000:1
Dynamic Contrast100 000 000:1
Colour depth1.07 billion colours (10 bits)16.7 million colours (8 bits)
Colour space (sRGB)130 %
Colour space (Adobe RGB)112 %
Colour space (DCI P3)104 %96 %
HDR+
Connection
Video transmission
DisplayPort v 1.4
2xHDMI
v 2.0
DisplayPort v 1.2
2xHDMI
v 2.0
Connectors (optional)
 
mini-Jack output (3.5 mm)
Features
Features
Flicker-Free
AMD FreeSync
NVIDIA G-Sync Compatible
Flicker-Free
AMD FreeSync Premium
NVIDIA G-Sync Compatible
Portrait pivot
Screen swivel
Height adjustment
Speakers
Sound power2x2 W
Game Features
aim
 
FPS display
 
aim
timer
FPS display
brighten darker areas
General
Wall mountVESA 100x100mm
Power consumption35 W
Energy class (new)F
External power supply
Dimensions (WxHxD)615x455x214 mm
Weight5.4 kg
Color
Added to E-Catalogdecember 2021february 2021

Response time (MPRT)

The parameter expresses how long an object moving in the frame is displayed on the screen until it completely disappears. The lower this indicator, the more realistic dynamic scenes look on the monitor. The reaction of the matrix to movements clearly shows the time of existence of the trail from the changing picture. The MPRT parameter is more dependent on the refresh rate of the monitor screen than on the pixel response time. To reduce its value, the Motion Blur Reduction (MBR) function is often used, which briefly turns off the backlight at the end of the time of dynamic frames in order to increase the clarity of dynamic scenes.

Refresh rate

The maximum frame rate supported by the monitor at the recommended (maximum) resolution.

The higher the frame rate, the smoother the movement on the screen will look, the less noticeable jerks and blurring will be on it. Of course, the actual image quality also depends on the video signal, but for normal viewing of video at a high frame rate, the monitor must also support it.

When choosing this option, keep in mind that at lower resolutions than the maximum, the supported frame rate may be higher. For example, a model with a 1920x1080 matrix and a claimed frame rate of 60 Hz at a reduced resolution can give 75 Hz; but the 75Hz frame rate is only listed in the specs if it is supported at the monitor's native (maximum) resolution.

Also note that a high frame rate is especially important for gaming models (see "Type"). In most of them, this figure is 120 Hz and higher; monitors with a frequency of 144 Hz are considered the best option in terms of price and quality, however, there are also higher values — 165 Hz and 240 Hz. And monitors at 100 Hz can be both inexpensive gaming models and advanced home ones.

You can evaluate all the frame rates at which this monitor is capable of operating by the ver...tical frequency claimed in the specifications (see below).

Brightness

The maximum brightness provided by the monitor screen.

Choosing a monitor with high brightness is especially important if the device is going to be used in bright ambient light — for example, if the workplace is exposed to sunlight. A dim image can be "dampened" by such lighting, making work uncomfortable. In other conditions, the high brightness of the screen is very tiring for the eyes.

Most modern monitors give out about 200 – 400 cd / m2 — this is usually quite enough even in the sun. However, there are also higher values: for example, in LCD panels (see "Type") the brightness can reach several thousand cd/m2. This is necessary taking into account the specifics of such devices — the image must be clearly visible from a long distance.

Dynamic Contrast

Dynamic contrast provided by the monitor screen.

Dynamic contrast refers to the difference between the brightest white at maximum backlight intensity and the deepest black at minimum backlight. In this way, this indicator differs from static contrast, which is indicated with a constant backlight level (see above). Dynamic contrast ratio can be expressed in very impressive numbers (in some models — more than 100,000,000: 1). However, in fact, these figures are poorly correlated with what the viewer sees: it is almost impossible to achieve such a difference within one frame. Therefore, dynamic contrast is most often more of an advertising than a practically significant indicator, it is often indicated precisely in order to impress an inexperienced buyer. At the same time, we note that there are "smart" backlight technologies that allow you to change its brightness in certain areas of the screen and achieve a higher contrast in one frame than the claimed static one; these technologies are found mostly in premium monitors.

Colour depth

The colour depth supported by the monitor.

This parameter characterizes the number of shades that the screen can display. And here it is worth recalling that the image in modern monitors is based on 3 basic colours — red, green, blue (RGB scheme). And the number of bits is indicated not for the entire screen, but for each base colour. For example, 6 bits (the minimum colour depth for modern monitors) means that the screen is capable of producing 2 ^ 6, that is, 64 shades of red, green and blue; the total number of shades will be 64 * 64 * 64 = 262,144 (0.26 million). An 8-bit colour depth (256 shades for each base colour) already gives a total of 16.7 million colours; and the most advanced modern monitors support 10-bit colour, allowing you to work with more than a billion shades.

Screens with support for FRC technology are worth a special mention; nowadays, you can find models marked " 6 bit + FRC " and " 8 bit + FRC ". This technology was developed to improve picture quality in situations where the incoming video signal has a greater colour depth than the screen, such as when 10-bit video is fed to an 8-bit matrix. If such a screen supports FRC, the picture on it will be noticeably better than on a regular 8-bit monitor (although somewhat worse than on a full-fledged 10-bit monitor, but “8 bit + FRC” screens are much...cheaper).

High colour depth is important primarily for professional graphics and other tasks that require high colour fidelity. On the other hand, such features significantly affect the cost of the monitor. In addition, it is worth remembering that the quality of colour reproduction depends not only on the colour depth, but also on other parameters — in particular, colour gamut (see below).

Colour space (sRGB)

Monitor colour gamut Rec. 709 or sRGB.

Any colour gamut is indicated as a percentage, however, not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the monitor's capabilities, the better its colour reproduction.

Nowadays, sRGB is actually the standard color model adopted for computer technology; This is what is used in the development and production of most video cards. For television, the Rec. standard, similar in parameters, is used. 709. In terms of the range of colors, these models are identical, and the percentage of coverage for them is the same. In the most advanced monitors it can reach or even exceed 100%; These are the values that are considered necessary for high-end screens, incl. professional.

Colour space (Adobe RGB)

Monitor colour gamut based on the Adobe RGB colour model.

Any colour gamut is indicated as a percentage, however, not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the monitor's capabilities, the better its colour reproduction.

Specifically, the Adobe RGB colour model was originally developed for use in printing; the range of colours covered by it corresponds to the capabilities of professional printing equipment. Accordingly, support for this model and its extensive colour gamut are important, first of all, if the monitor is used in the design and layout of high-quality printed products. In the most advanced screens, this figure can be 99% or even more. At the same time, we note that Adobe RGB is wider than the popular sRGB, and the percentage figures for this model are smaller: for example, 99% in RGB often gives only about 87% in Adobe RGB.

Colour space (DCI P3)

Colour gamut of the monitor according to the DCI P3 colour model.

Any colour gamut is indicated as a percentage, however, not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the monitor's capabilities, the better its colour reproduction.

DCI P3 is a professional colour model used primarily in digital cinemas. It is noticeably more extensive than the standard sRGB, which gives better and more accurate colours. Accordingly, the percentage values are smaller — for example, 115% of sRGB coverage corresponds to approximately 90% of DCI P3 coverage; in the most advanced modern monitors, coverage according to this standard is 98 – 100%. At the same time, DCI-P3 support is not cheap, and therefore it is found mainly in high-end monitors for professional and gaming purposes.

HDR

This technology is designed to expand the range of brightness reproduced by the monitor; Simply put, an HDR model will display brighter whites and darker blacks than a "regular" display. In fact, this means a significant improvement in colour quality. On the one hand, HDR provides a very "live" image, close to what the human eye sees, with an abundance of shades and tones that a normal screen cannot convey; on the other hand, this technology allows to achieve very bright and rich colours.

Modern HDR monitors may use the DisplayHDR designation. This standard takes into account a number of parameters that determine the overall quality of HDR performance: brightness, colour gamut, colour depth, etc. Based on the results of measurements, the monitor is assigned one of the following markings: DisplayHDR 400 means relatively modest HDR capabilities, DisplayHDR 600 is average, DisplayHDR 1000 is above average, DisplayHDR 1400 is advanced. At the same time, the absence of a DisplayHDR label in itself does not mean anything: it’s just that not every HDR monitor is tested according to this standard.

Note that for the full use of HDR, you need not only the appropriate monitor, but also content (movies, television, etc.) originally created in HDR. In addition, there are several different HDR techn...ologies that are not compatible with each other. Therefore, when buying a monitor with this function, it is highly desirable to clarify which version it supports.
AOC AGON Q27G2S often compared
Asus TUF Gaming VG27AQ1A often compared