Dark mode
United Kingdom
Catalog   /   Computing   /   Components   /   PSUs

Comparison Chieftec Polaris PPS-650FC vs Chieftec A-90 GDP-750C

Add to comparison
Chieftec Polaris PPS-650FC
Chieftec A-90 GDP-750C
Chieftec Polaris PPS-650FCChieftec A-90 GDP-750C
from £83.49 
Outdated Product
Compare prices 1
User reviews
TOP sellers
Main
Efficiency at the level of 90%. Such high efficiency at the level of certified 80 PLUS Gold power supplies. However, this power supply is not certified.
Power650 W750 W
Form factorATXATX
Specs
PFCactiveactive
Efficiency90 %
Cooling system1 fan1 fan
Fan size120 mm140 mm
Fan bearinghydrodynamicsliding
Certification80+ Goldwithout 80+
ATX12V version2.42.3
Power connectors
MB/CPU power supply24+8+8(4+4) pin24+8 (4+4) pin
SATA66
MOLEX33
PCI-E 8pin (6+2)42
Floppy
Cable systemmodularsemi-modular
Braided wires
Cable length
MB650 mm550 mm
CPU650 mm550 mm
SATA450 mm550 mm
MOLEX450 mm550 mm
PCI-E500 mm550 mm
Max. power
+3.3V22 А22 А
+5V22 А22 А
+12V154.2 А62 А
-12V0.3 А0.3 А
+5Vsb3 А2.5 А
+12V650 W774 W
+3.3V +5V120 W120 W
-12V3.6 W3.6 W
+5Vsb15 W12.5 W
General
Over voltage protection (OVP)
Over power protection (OPP)
Short circuit protection (SCP)
Manufacturer's warranty2 years2 years
Dimensions (HxWxD)87x150x140 mm87x150x160 mm
Weight2.17 kg
Added to E-Catalogoctober 2019october 2014

Power

The output power of the power supply, in other words, is the maximum power that it is capable of delivering to the system. For the computer to operate efficiently, the power supply must be greater than the total power consumption of the system at maximum load. The latter can be calculated by summing the power of individual components, however, in general, for office configurations , about 400 W450 W is considered sufficient, for medium gaming — about 600 W( 500 W, 550 W, 650 W, 700 W, 750 W), and for the top ones — power of 800 W and above ( 850 W, 1000 W and even more than 1 kW).

Efficiency

Efficiency, in this case — the ratio of the power of the power supply (see "Power") to its power consumption. The higher the efficiency, the more efficient the power supply, the less energy it consumes from the network at the same output power, and the cheaper it is to operate. Efficiency may differ depending on the load; the characteristics can indicate both the minimum efficiency and its value at an average load (50%).

It should be noted that compliance with one or another level of 80PLUS efficiency directly depends on this indicator (for more details, see "Certificate").

Fan size

The diameter of the fan(s) in the power supply cooling system.

The large diameter allows to achieve good efficiency at relatively low RPMs, which in turn reduces noise and power consumption. On the other hand, large fans are more expensive than small ones and take up a lot of space, which affects the dimensions of the entire PSU. We also emphasize that a small fan is not yet a sign of a cheap power supply — quite advanced models can also have such equipment, in order to reduce dimensions.

As for specific diameters, the smallest value that can be found in modern consumer-grade PSUs is 80 mm. The most popular option is 120 mm, this size gives good efficiency and a relatively low noise level at a reasonable price and dimensions. Larger diameters are somewhat less common — 135 mm and 140 mm.

Fan bearing

The bearing is the piece between the rotating axle of the fan and the fixed base that supports the axle and reduces friction. The following types of bearings are found in modern fans:

— Sliding. The action of these bearings is based on direct contact between two solid surfaces, carefully polished to reduce friction. Such devices are simple, reliable and durable, but their efficiency is quite low — rolling, and even more so the hydrodynamic and magnetic principle of operation, provide much less friction.

— Rolling. They are also called "ball bearings", since the "mediators" between the axis of rotation and the fixed base are balls (less often — cylindrical rollers) fixed in a special ring. When the axis rotates, such balls roll between it and the base, due to which the friction force is very low — noticeably lower than in plain bearings. On the other hand, the design turns out to be more expensive and complex, and in terms of reliability it is somewhat inferior to both the same plain bearings and more advanced hydrodynamic devices. Therefore, although rolling bearings are quite widespread nowadays, however, in general, they are much less common than the mentioned varieties.

— Hydrodynamic. Bearings of this type are filled with a special liquid; when rotated, it creates a layer on which the moving part of the bearing slides. In this way, direct contact between hard surfaces is avoided and friction is significantly reduced compared to previous...types. Also, these bearings are quiet and very reliable. Of their shortcomings, a relatively high cost can be noted, but in fact this moment often turns out to be invisible against the background of the price of the entire system. Therefore, this option is extremely popular nowadays, it can be found in cooling systems of all levels — from low-cost to advanced.

— Magnetic centering. Bearings based on the principle of magnetic levitation: the rotating axis is "suspended" in a magnetic field. Thus, it is possible (as in hydrodynamic ones) to avoid contact between solid surfaces and further reduce friction. Considered the most advanced type of bearings, they are reliable and quiet, but expensive.

Certification

The presence or absence of an 80+ certificate for the power supply. This certificate indicates high energy efficiency: to obtain it, the efficiency (see above) must be at least 80%, and in different modes (20%, 50% and 100% of the maximum load). There are several degrees of 80+:

80+. The original version of the certificate, assuming an efficiency of at least 82% (at least 85% for 50% load).

80+ White. The second name of the original 80+ certificate (see above).

80+ Bronze — efficiency not less than 85% (for half load — 88%).

80+ Silver — respectively 87% (90% for half load).

80+ Gold — 89% (92% for half load)

80+ Platinum — 90% (94% for half load).

80+ Titanium — 94% (96% for half load).

The power factor (see "PFC Type") must be at least 0.9 for the lower levels and at least 0.95 for the Platinum level. Also note that for redundant power used in server systems, the efficiency requirements are somewhat lower.

ATX12V version

A standard for power supplies that supplements the ATX specifications regarding power supply along the 12 V line. Introduced into use since the time of the Intel Pentium 4 processor. In the first series of the standard, the +5 V line was mainly used; from version 2.0, the +12 V line was introduced to fully power the components computer. Also in the second generation, a 24-pin power connector appeared, used in most modern motherboards.

MB/CPU power supply

The number and type of connectors provided in the PSU to power the motherboard or processor.

This parameter is written as the sum of several numbers, for example, "24+4". The first number in such an entry means the number of contacts in the connector for powering the motherboard; in the vast majority of cases, this is just 24, since modern motherboards use a 24-pin connector as standard. The second number describes the socket for powering the processor; most entry-level and mid-range CPUs use 4-pin power, but powerful chips may require 8-pin power. There can be several 4- or 8-pin connectors — based on powerful high consumption processors.

A separate case is the blocks of the "24 (20 + 4)" format. They have two separate plugs — 20 pin and 4 pin, which allows you to power both 24-pin motherboards and older 20-pin motherboards from such power supplies. At the same time, such models do not provide a separate power supply for CPU — it is powered only through the socket, and the 4-pin plug cannot be connected to any other components except the motherboard.

Now on the market there are PSUs with such power supply for the motherboard: 24 pin (20+4), 24+4 pin, 24+8(4+4) pin, 24+8+8(4+4) pin.

PCI-E 8pin (6+2)

The number of PCI-E 8pin (6+2) power connectors provided in the PSU design.

Additional PCI-E power connectors (all formats) are used to additionally power those types of internal peripherals for which 75 W is no longer enough, supplied directly through the PCI-E socket on the motherboard (video cards are a typical example). In PC components, there are two types of such connectors — 6pin, providing up to 75 W of additional power, and 8pin, giving up to 150 W. And the 8pin (6 + 2) plugs used in power supplies are universal: they can work with both 6-pin and 8-pin connectors on the expansion board. Therefore, this type of plug is the most popular in modern PSUs.

As for the quantity, on the market you can find models for 1 PCI-E 8pin (6 + 2) connector, for 2 such connectors, for 4 connectors, and in some cases — for 6 or more. Several of these plugs can be useful, for example, when connecting several video cards — or for a powerful high-performance video adapter equipped with several PCI-E additional power connectors.

Floppy

The presence of at least one Floppy power connector in the PSU.

Initially, this connector was intended to power floppy disk drives, hence the name. It is also known under the designation "mini-Molex". Anyway, this standard is generally considered obsolete, but it is still used by some specific types of components, and therefore continues to be used in power supplies.
Chieftec Polaris often compared
Chieftec A-90 often compared