United Kingdom
Catalog   /   Camping & Fishing   /   RC Models   /   Drones

Comparison RYZE Tello vs Xiaomi MiTU Drone

Add to comparison
RYZE Tello
Xiaomi MiTU Drone
RYZE TelloXiaomi MiTU Drone
from £112.97 
Outdated Product
Outdated Product
TOP sellers
Main
It has five flight modes. Can be used with 3D glasses. Electronic image stabilization. 14-core Intel processor. Flight control system from DJI. Takeoff and landing by hand. The ability to programme the drone on Scratch.
Built-in infrared gun for air combat. Removable battery. 4 GB internal memory for video and photo recording.
Featuresmini dronemini drone
Flight specs
Maximum flight time13 min
10 min /charge time — 60 min/
Horizontal speed
30 km/h /8 m/sec/
Camera
Camera typebuilt-inbuilt-in
Number of megapixels5 MP2 MP
Photo resolution1600x1200 px
HD filming (720p)1280x720 px 30 fps1280x720 px
Viewing angles82.6°
Camera stabilization
Live video streaming
 /using WI-FI up to 30 metres/
Flight modes and sensors
Flight modes
return "home"
acrobatic mode
 
acrobatic mode
Sensors
heights
gyroscope
heights
gyroscope
Control and transmitter
Controlsmartphone onlysmartphone only
Gesture control
Range100 m50 m
Video transmission frequency2.4 GHz (Wi-Fi)
Motor and chassis
Motor typecollectorcollector
Number of screws4 pcs4 pcs
Screw diameter76 mm
Battery
Battery capacity1.1 Ah0.92 Ah
Voltage3.8 V3.7 V
Battery model1S
Batteries in the set1 pcs1 pcs
USB charging
General
Built-in gun
 /infrared/
Protected case
Body backlight
MaterialplasticABS plastic
Dimensions98x93x41 mm91x91x38 mm
Weight
80 g /with accessories/
88 g
Color
Added to E-Catalogfebruary 2019august 2018

Maximum flight time

Maximum flight time of a quadcopter on one full battery charge. This indicator is quite approximate, since it is most often indicated for ideal conditions - in real use, the flight time may be less than stated. However, by this indicator it is quite possible to evaluate the general capabilities of the copter and compare it with other models - a longer declared flight time in practice usually means higher autonomy.

Note that for modern copters, a flight time of 20 minutes or more is considered a good indicator, and in the most “long-lasting” models it can exceed 40 minutes.

Horizontal speed

The highest speed that a quadcopter can achieve in horizontal flight. It is worth considering that in most cases this parameter is indicated for optimal operating conditions: a fully charged battery, low air temperature, minimum weight, etc. However, it is quite possible to rely on it both when choosing and when comparing different models of copters with each other.

Note that quadcopters were originally designed as stable and maneuverable aerial platforms, and not as high-speed vehicles. Therefore, you should specifically look for a fast quadcopter only in cases where the ability to quickly move from place to place is critical (for example, when the device is supposed to be used for video recording of fast-moving objects over large areas).

Number of megapixels

Resolution of the matrix in the standard camera of the quadrocopter.

Theoretically, the higher the resolution, the sharper, more detailed image the camera can produce. However, in practice, the quality of the "picture" is highly dependent on a number of other technical features - the size of the matrix, image processing algorithms, optical properties, etc. Moreover, when increasing the resolution without increasing the size of the matrix, the image quality may drop, because. significantly increases the likelihood of noise and extraneous artifacts. And for shooting video, a large number of megapixels is not required at all: for example, to shoot Full HD (1920x1080) video, which is considered a very solid format for quadrocopters, a sensor of only 2.07 megapixels is enough.

Note that high resolution is often a sign of an advanced camera with high image quality. However, this quality is not determined by the number of megapixels, but by the characteristics of the camera and the special technologies used in it. Therefore, when choosing a quadcopter with a camera, you should look not so much at the resolution as at the class and price category of the model as a whole.

Photo resolution

The maximum resolution of photos that the standard quadcopter camera can take. This parameter is directly related to the resolution of the matrix (see above): usually, the maximum resolution of a photo corresponds to the full resolution of the matrix. For example, for pictures of 4000x3000 pixels, a sensor of 4000 * 3000=12 megapixels is provided.

Theoretically, a higher resolution of photography allows you to achieve highly detailed photographs, with good visibility of fine details. However, as in the case of the overall resolution of the matrix, high resolution does not guarantee the same overall quality, and you should focus not only on this parameter, but also on the price category of the quadcopter and its camera.

Also note that the high resolution of the camera affects the volume of the materials being shot, for their storage and transmission, more voluminous drives and “thick” communication channels are required.

HD filming (720p)

The maximum resolution and frame rate supported by the aircraft camera when shooting in HD (720p).

HD 720p is the first high-definition video standard. Notably inferior to Full HD and 4K formats in terms of performance, it nevertheless provides pretty good detail without significant demands on the camera and processing power. Therefore, HD support is found even in relatively inexpensive copters. And in high-end models, it can be provided as an addition to more advanced standards.

In drones, HD cameras typically use the classic 1280x720 resolution; other, more specific options are practically non-existent. As for the frame rate, the higher it is, the smoother the video turns out, the less movement is blurred in the frame. In general, values up to 24 fps can be called minimal, from 24 to 30 fps — medium, from 30 to 60 fps — high, and speeds over 60 fps are used mainly for slow motion HD.

Viewing angles

The viewing angle provided by the standard quadcopter camera; for optics with adjustable zoom, usually, the maximum value is taken into account.

The viewing angle is the angle between the lines connecting the centre of the lens to the two opposite extreme points of the visible image. Usually measured along the diagonal of the frame, but there may be exceptions. As for the specific values of this parameter, in modern copters they can range from 55 – 60 ° to 180 ° and even more. At the same time, a wider angle (ceteris paribus) allows you to simultaneously fit more space into the frame; and a narrower one covers a smaller space, however, the objects that are in the frame look larger, it is easier to see individual small details on them. So when choosing by this parameter, you should consider what is more important for you: wide coverage or an additional zoom effect.

Camera stabilization

Stabilization system built directly into the complete drone camera.

Any stabilization system is designed to compensate for vibrations and shakes, thus providing a stable image, without shaking or sudden movements in the camera. This function slightly increases the cost of the device, but the video quality increases noticeably. On the other hand, stabilization makes it difficult to perform complex maneuvers, since its use worsens the feedback: changes in the camera image do not quite correspond to changes in the drone’s position in space. In light of this, in devices that have an acrobatic mode (see “Flight Modes”), such a system can be switched off.

Note that specifically in the camera, stabilization is most often carried out according to the electronic principle: reserve space is allocated at the edges of the matrix, and in the event of vibrations or shocks, the camera “pulls up” a fragment of the image from this reserve, keeping the image in the frame motionless. This format of operation somewhat reduces the useful area of the matrix, but is inexpensive, does not affect the weight of the camera and does not complicate its design. A more effective, but also more complex and expensive option is a built-in optical stabilizer, which uses a lens with a moving lens system.

In addition, another method can be used to stabilize the image - a mechanical gimbal stabilizer. However, such a gimbal is not part of the c...amera, so its presence is specified separately (see below). At the same time, some copters provide both functions at once - both built-in stabilization and gimbal; this ensures maximum efficiency.

Flight modes

Return home function. With this function, the quadcopter can automatically return to the starting point. The specific details of this feature may vary. So, some models return "home" at the user's command, others are able to do it on their own — for example, when the signal from the remote control is lost or when the battery charge is critically low; in many devices, both options are provided at once. Also note that this function is found even in models that do not have a GPS module (see "Sensors") — the copter can navigate in space in another way (by inertial sensors, by a signal from the remote control, etc.).

Follow me mode. A mode that allows the quadcopter to constantly follow the user at a short distance — like a "personal drone". The way to implement this mode and the equipment required for it can be different: some models track the direction to the transmitter and the signal strength from it, others constantly receive data from the GPS module of a smartphone or other gadget and follow these coordinates, etc. Anyway, such a mode can be useful not only for entertainment, but also for quite practical purposes — for example, for using a quadcopter as an “air chamber”, constantly located next to the operator and at the same time not occupying hands.

Dronie (distance). Initially, the term “dronie” refers to a selfie (photo or video) taken from a...drone. This mode is mainly intended for such tasks. And its essence lies in the fact that the copter smoothly moves away from a certain object along a given trajectory, keeping this object in the centre of the frame. The classic version of flying in Dronie mode is moving away first horizontally, then horizontally and up; however, in some models, the copter’s trajectory can be further configured. Frame management can also be carried out in different ways — from simple pointing at a certain point and ending with the selection of an object on the screen with further "smart" tracking of this object. Anyway, for all its simplicity, such a shooting technique allows you to create quite interesting videos: for example, in this way you can first capture a group of people in close-up in one video, then the beauty of the landscape around them.

Rocket (distance up). A flight mode in which the copter smoothly rises to a predetermined altitude along a strictly vertical trajectory. Similar to the Dronie described above, it is mainly used when shooting video: first, a certain scene is shot in close-up, and as it rises, the camera covers an increasingly wider area around this scene. Usually, in Rocket mode, you can pre-set the height at which the device will stop.

"Orbit mode" (flying in a circle). A mode that allows you to launch the copter in a circular orbit around the specified point. It is also used mainly for shooting video: in such cases, the camera remains constantly pointed at a given object, but the angle and background, due to the movement of the drone, are constantly changing. In the "orbit" settings, usually, you can set its radius, height and direction of movement, as well as the angle of the camera.

Helix (circle in a spiral). Another mode used as an artistic technique for filming videos. In this mode, the copter, keeping a given object in the centre of the frame, moves around it in a spiral, gradually moving away and increasing its height. This allows you to get the maximum variety of angles and angles of coverage.

Note that Dronie, Rocket, Helix, and Orbit modes originally appeared as part of the proprietary QuickShot toolkit in DJI's Mavic series drones. However, later similar functions were introduced by other manufacturers, so now these names are used as common nouns.

Flight plan(Waypoints). The ability to set a specific flight route for the quadcopter, by control points. This feature is very similar to the GPS waypoint flyby (see above), but it works differently, without the use of GPS navigation. One of the most popular options is building a route in the smartphone application through which the copter is controlled; when the programme is launched, the smartphone issues a sequence of commands corresponding to the route to the device. In general, the Waypoints mode is not as accurate as a GPS waypoint flyby and offers fewer options. Therefore, this function is mainly for entertainment purposes; if the copter has a camera, it can be useful for taking a selfie or a simple video.

Flight by GPS points. A mode that allows you to launch a quadcopter along a specific route — by setting individual route points to the car in advance (according to GPS coordinates) and the order in which they are passed. In addition, additional settings may be provided — for example, speed and altitude on individual sections of the route. This function is similar to the Waypoints mode (see below) in many ways, but it is found mainly in mid-range and high-end devices. At the same time, the use of GPS provides higher accuracy, which allows the drone to be used for professional purposes. For example, if you set a route for shooting from the air in this way, the operator will be able to fully concentrate on working with the camera, without being distracted by controlling the copter.

Acrobatic mode. A special mode for performing aerobatics. Note that the specific meaning of this mode may be different, depending on the level and purpose of the copter. So, in the simplest entertainment models, automatic programs are usually provided that allow you to perform certain aerobatic manoeuvres literally “at the touch of a button”. And in advanced devices in flight mode, the stabilization system is turned off, and the drone is very sensitive to operator commands; this requires high precision in control, but gives maximum control over the flight.

Gesture control

The ability to control the copter with gestures.

The implementation of this function can be different. The simplest and most inexpensive option is smartphone control, when commands are given by turning and tilting the gadget. There are models where the accelerometer and gyroscope are built directly into the remote control, and you can control it with hand gestures with the remote control. Another, more expensive and original way is to recognize the position of the user's hands using the built-in camera. Such devices usually have a set of commands tied to rather specific movements. For example, by folding your fingers into a “frame”, you can turn on the burst photography mode, with a wave of your hand you can call to yourself, and the device will perceive the outstretched palm as a landing pad.

In general , gesture control provides at least additional entertainment, and in some cases can be useful from a practical point of view.
RYZE Tello often compared
Xiaomi MiTU Drone often compared