United Kingdom
AV Receivers Denon 

Articles, reviews, useful tips

All materials
06.2024
Rating av receivers (june)
Popularity rating av receivers is based on integrated statistics on interest shown by Internet audience
Deciphering the markings of Marantz AV receivers
In this article, we will focus on deciphering the "names" of Marantz AV receivers.
Deciphering the markings of Yamaha AV receivers
In this article, we will focus on deciphering the "names" of Yamaha AV receivers.
Deciphering the markings of Onkyo AV receivers
In this article, we will focus on deciphering the "names" of Onkyo AV receivers.

AV Receivers: specifications, types

Device type

— AV receiver. This category includes the actual AV receivers in the classical sense. They may differ in individual capabilities, however, all such devices have the presence of two key functions: the ability to independently play content without an external player (due to a tuner, USB port, support for online services, etc.) and its own built-in power amplifier. Thus, such models combine the functionality of a multimedia player, processor and amplifier (see the last two below) and can work with equal success both in the signal switching mode (with amplification) and in the player mode. This makes them the most versatile; in addition, separate external power amplifiers are not required for operation.

AV amplifier. One of the features of AV amplifiers and their main difference from the receivers described above is the inability to play content "on their own" — the amplifiers only process the signal from an external source (for example, a DVD player). Accordingly, of the three key possibilities, two remain here — signal transmission and amplification. In many of these models, the functionality for setting the sound is significantly wider than in devices of any other type.

AV processor. Devices of this variety have a tuner (or other direct playback capabilities), but are not equipped with their own full-fledged power amplifiers for speakers. Thus, you can use processors in home theater s...ystems only with external amplifiers. On the other hand, they have extensive possibilities for signal processing (both video and audio), the use of special effects, etc.; according to this indicator, this type can even surpass classical receivers.

DAC frequency

A digital-to-analogue converter (DAC) is an indispensable element of any system designed to reproduce digital sound. The DAC is an electronic module that translates sound information into pulses that are sent to the speakers. The technical features of such a conversion are such that the higher the sampling frequency, the better the signal at the output of the DAC, the less it is distorted during conversion. The most popular option in receivers today is 192 kHz — it corresponds to a very high sound quality (DVD-Audio) and at the same time avoids unnecessary increase in the cost of devices.

Audio DAC

Another indicator that determines the overall quality of the digital-to-analogue audio converter. For details on the converter, see "Audio DAC Sampling Rate"; here we note that the bit depth is standardly expressed in bits, and the higher it is, the more accurately the signal at the output of the DAC corresponds to the original signal and the less distortion is introduced into it. Today, it is believed that a 16-bit indicator provides quite acceptable signal quality, and 24-bit DACs are suitable even for premium-level equipment.

Auto sound calibration

In this case, the function of automatic adjustment of each individual sound channel in terms of level and delay is implied so that all of them together provide surround sound that best matches the intention of the creators of the film or musical composition. The need for such a setting is due to the fact that practically no room (neither residential, nor even specialized) is acoustically perfect: the sound propagation is affected by the wall material, floor covering, furniture (sofas, wardrobes, etc.) and other factors. Therefore, the technically correct arrangement of the speakers alone does not guarantee a full-fledged surround sound.

Typically, automatic tuning uses a microphone placed at the intended listening position. During the calibration process, the device outputs test sound signals through the acoustics and “listens” to the features of the sound through the microphone, if necessary, independently changing the audio parameters.

Such a function can greatly simplify the preparation for work — after all, the device will carry out the main part of the setup on its own. However, keep in mind that even in the most advanced receiver models, automatic calibration algorithms are not perfect. As a result, it is highly likely that the automatically set parameters will not meet the tastes of demanding audiophiles. In addition, the reliability of the calibration is also highly dependent on the characteristics of the microphone used — and options with high...sound quality can be quite expensive.

Auto level

This function automatically adjusts the volume level of the sound when it changes abruptly. Such a need is associated, for example, with the fact that one film can contain both dialogue and intense special effects; as a result, at low volume, conversations can sometimes be hard to hear, and at high volume, the sound can periodically “beat on the ears” and disturb others. In addition, while watching TV, many have probably come across commercials that sound noticeably louder than the main programme. Automatic level control boosts the volume at low audio levels and lowers it at high levels, thus helping to avoid the discomfort of too loud sound while maintaining normal hearing.

Surround sound in headphones

Possibility to simulate multi-channel (for example, 5.1) sound in traditional two-channel headphones. For this, a Dolby Headphone decoder is usually used, which processes the sound in such a way that the sound heard in the headphones is perceived as multi-channel — in particular, the intended position of its sources can be determined much more accurately. And considering that modern Hi-Fi class headphones are not inferior in sound quality to acoustics (and are significantly cheaper), this feature may well come in handy even for demanding audiophiles.

eARC

The audio receiver supports eARC, an enhanced version of the Audio Return Channel (ARC) used with an HDMI connection (see below).

By itself, the audio return channel allows you to "swap" the HDMI output of the AV receiver and the HDMI input of the TV or other external device — thus, this device turns into an audio signal source, and the receiver starts to work as a receiver. Such functionality is designed mainly for those cases when the TV receives a signal not from the receiver, but from another source (built-in tuner, media player, flash drive, etc.), however, the soundtrack must be output to external speakers through the receiver. Without ARC, you would have to use an additional connection (for example, via an optical interface), while the audio return channel eliminates the need for extra wires: the same HDMI cable is used both for transmitting video / audio from the receiver to the TV and for transmitting audio from TV to receiver. Also, the advantages of ARC over traditional audio interfaces are higher bandwidth, as well as the ability to use the CEC function (control of connected devices from one remote control).

Specifically, eARC was introduced simultaneously with the HDMI 2.1 standard and received a number of improvements compared to conventional ARC. Here are the main ones:

— Up to 40x more bandwidth, allowing uncompressed 5.1 and 7.1 surround sound, HD audio and Dolby Atmos and DTS:X "object-orie...nted" multi-channel codecs (see Decoders).
— Technology Lip Sync Correct, eliminating desynchronization between video and sound.
— Proprietary protocol to automatically detect audio formats supported by both connected devices and select the best option.

Of course, in order to use eARC, both the receiver and the TV it is connected to must support it.

Ultra HD

The ability of the receiver to work with a video signal of ultra-high definition - Ultra HD. Various versions are available. The most popular are 4K and 8K. The resolution of such video is 4 and 8 times higher than that of Full HD, respectively, which allows you to achieve even greater image clarity and degree of detail (compared to FullHD). However, you will also need a 4K or 8K TV/projector to view it. And the cost of such systems (in particular 8K) can be expensive.

Upscaling

The ability to increase the resolution of the video signal processed by the receiver - if the original video resolution is lower. Depending on the capabilities of the receiver, in particular its HDMI ports, upscaling to Ultra HD 4K and upscaling to Ultra HD 8K may occur.

The principle of upscaling is that a relatively low-resolution video is supplemented with the required number of pixels using special algorithms. Due to this, when playing such a video, the quality of the “picture” is noticeably higher than without upscaling (although somewhat lower than that of content originally recorded in UltraHD). It makes sense to specifically look for a receiver with this function if you plan to use it with a 4K or 8K screen.

HDR

Receiver support for HDR technology; this clause may also specify the specific supported HDR format.

HDR stands for High Dynamic Range. This technology allows you to expand the range of brightness reproduced simultaneously on the screen; to put it simply, the viewer will see brighter whites and darker blacks. In practice, this means a significant improvement in color quality: colors are more vibrant and at the same time more faithful than without HDR. However, to use this function, in addition to the receiver, a TV/projector that supports the appropriate HDR format and content recorded in this format is required.

In terms of specific formats, the most popular options these days are basic HDR10, advanced HDR10+, and high-end Dolby Vision. Here are their features:

- HDR10. Historically the first of the consumer HDR formats, less advanced than the options described below but extremely widespread. In particular, HDR10 is supported by almost all streaming services that provide HDR content at all, and it is also common for Blu-ray discs. Allows you to work with a color depth of 10 bits (hence the name). At the same time, devices of this format are also compatible with content in HDR10 +, although its quality will be limited by the capabilities of the original HDR10.

- HDR10+. Improved version of HDR10. With the same color depth (10 bits), it uses the so-called dynamic metadata,...which allows transmitting information about the color depth not only for groups of several frames, but also for individual frames. This results in an additional improvement in color reproduction.

Dolby Vision. An advanced standard used particularly in professional cinematography. Allows you to achieve a color depth of 12 bits, uses the dynamic metadata described above, and also makes it possible to transmit two image options at once in one video stream - HDR and normal (SDR). At the same time, Dolby Vision is based on the same technology as HDR10, so in modern video technology this format is usually combined with HDR10 or HDR10+.

3D

The ability of the receiver to output a video signal in 3D format — that is, a "volumetric" image that has three full dimensions (including depth). Since 3D uses the division of the “picture” of the image into two parts (for the left and right eyes), the format of such a signal differs from the usual two-dimensional one, and not every model is able to work with it. Also keep in mind that viewing 3D content requires not only a receiver, but also a TV (or other playback device) with the appropriate screen capabilities.

Multi Zone

The possibility of using the receiver for simultaneous transmission of signals from different sources to screens and speakers located in different places (zones). For example, in a large house, you can simultaneously stream a movie from a Blu-ray player to a screen in a large room, a TV show to a TV in the kitchen, and a radio programme to speakers in a library. Another option for using Multi-Zone is entertainment centers with several rooms of different types (for example, a cinema hall, a roller skating rink and a cafe).

Number of channels

The maximum number of channels that the receiver can output to external speakers. This parameter is specified for all types (see above): even AV processors that do not have an amplifier as such are often equipped with a very extensive set of audio processing tools (and this set is sometimes even wider than in models with amplifiers).

The most popular options by the number of channels today are as follows:

— 2.1. The simplest option found in modern AV receivers is the classic two-channel stereo sound, supplemented by a third channel for a subwoofer. It is worth noting here that the "volume" of such a sound is very limited: it allows you to simulate the shift of the sound source to the left or right, but does not cover the space on the sides and behind the listener. Receivers of this kind are usually entry-level devices.

— 3.1. Such a system is usually the 2.1 described above, supplemented by a third front speaker — in the centre. This provides a more authentic sound from the front. And for some 3.1 systems, design tricks are claimed that allow them to be used for surround sound, similar to 5.1. Rear channels in such systems are simulated by reflecting sound from the walls behind the user. Of course, the sound accuracy is noticeably lower than that of a full-fledged 5.1, but this option may be optimal in tight spaces where there is no space for a full set of six-channel acoustics.

5.1. The most popular surround sound format that can provide the effect of "environment". 5 main channels include a centre, two front (left-right) and two rear (similarly), a unit indicates a separate low-frequency channel for a subwoofer.

— 5.2. Sound format similar to 5.1 above, except for two channels for subwoofers instead of one. This improves the quality of the bass sound, which can be useful for films with a lot of special effects, live performance recordings, etc.

— 6.1. A sound format with an expanded number of main channels relative to the classic 5.1. The sixth main channel in this format is usually the centre back — this increases the accuracy of the sound transmission in the back of the stage.

— 6.2. 6.1 version of the format described above, supplemented by a second subwoofer; this improves the quality of low frequency transmission and allows you to cover a larger area.

— 7.1. With this sound format, five main channels (similar to the 5.1 system described above) are supplemented with two more. There are a lot of options for installing speakers for these channels — for example, these can be additional speakers above two front or two rear speakers, two separate side speakers, an additional “centre” pair on the rear channel, etc. Anyway, an increase in the number of channels makes it possible to achieve a more accurate transmission of “surround” sound compared to 5.1, however, much less content has been released for such systems.

— 7.2. A variation on the 7.1 format (see above) that allows the use of two separate subwoofers; this increases the accuracy of the transmission of low frequencies and expands the possibilities for their adjustment.

— 8.4. A specific variant found in single models of AV receivers. It is not so much a generally accepted sound format as an illustration of advanced configuration options: up to 8 main speakers and up to 4 subwoofers can be connected to the device, which gives very extensive fine-tuning options (however, such options are not cheap).

— 9.1. One of the most advanced surround sound formats today: it includes 5 classic main channels (similar to a 5.1 system) and 4 additional ones, the location of which can be different — for example, two side speakers and two upper ones above the left and right front, or even 4 speakers, directed towards the ceiling. The 9.1 format allows you to achieve very high fidelity of multi-channel audio transmission, but it is expensive, difficult to set up, and very little content has been released for such systems.

— 9.2. Modification of the above 9.1 format, supplemented by a second subwoofer for more accurate and high-quality reproduction of low-frequency sound.

— 11.1. Further, after 9.1, expansion and improvement of the idea of multi-channel sound. Usually in 11.1 systems, the five "classic" main channels (see 5.1) are supplemented with six more in the following way: two speakers to the left and right of the centre (in addition to the left and right front), two height speakers above the main front and two more — above main rear. This significantly increases the accuracy of surround sound transmission and adds the ability to shift it not only horizontally, but also vertically. However, the price and complexity of setting up such systems is appropriate, so they are designed more for the professional sphere (for example, cinema halls of entertainment centers) than for home use.

— 11.2. Systems almost identical to those described above 11.1, but supplemented by a second subwoofer. The latter is useful not only for reliability, but also for covering a vast area.

— 12.4. A top-of-the-line AV receiver option that is designed to handle all existing surround sound formats (including "true" 3D sound) and offers extremely wide customization options (albeit at an appropriate price).

— 13.2. Another format typical for luxury AV receivers and similar to 12.4 described above (with the exception of differences in the number of channels, which are not critical in this case).

— 15.1. A very rare and expensive option, designed for the use of mainly advanced acoustic systems — in particular, the halls of small cinemas.

Note that this paragraph indicates the most advanced sound format that the receiver is capable of working with; the general set also includes simpler options. For example, 7.1 systems usually handle 5.1 without any problems, not to mention stereo.

Power per channel

the maximum sound power that can be delivered by the power amplifier (if the receiver has one, see "Type") per speaker channel. It is worth noting here that in this case it is customary to indicate the so-called RMS (Rated Maximum Sinusoidal), or rated power. Rated is considered the highest power that the amplifier is guaranteed to be able to produce without interruption for an hour without any failures or breakdowns. Short-term jumps in the signal level can significantly exceed this value, but the main indicator is still the rated power.

The power of the amplifier largely determines the sound volume of the speaker system connected to the device. In fact, the loudness also depends on the characteristics of the speakers — sensitivity, impedance, etc.; however, other things being equal, the same acoustics on a more powerful amplifier will sound louder. In addition, this parameter also affects the compatibility of the speakers and the amplifier — it is believed that the difference in the nominal powers of these components should not exceed 10-15% (and ideally, the powers should generally match). And since different rooms require speakers of different power, this also affects the choice of amplifier for a particular environment; specific recommendations on the ratio of room characteristics and acoustic power can be found in special sources.

Also note that if the amplifier can operate with a load of different resistance (see..."Permissible acoustic impedance"), then for different options the power per channel will be different — the lower the resistance, the higher the power. In the characteristics, in this case, the maximum value of this parameter is usually indicated — that is, the power at the minimum allowable resistance.

Signal to noise ratio

This indicator determines the amount of extraneous noise that accompanies the sound output by the receiver's amplifier. It is convenient because it takes into account almost all possible significant noise — both created by the device itself and due to external causes. The higher the signal-to-noise ratio, the lower the noise volume compared to the main signal, the cleaner the amplifier will sound. A reading of 70-80 dB is considered normal for most consumer electronics, but in AV receivers, which are usually premium devices, this can only be called satisfactory. In the most advanced models, this figure can significantly exceed 100 dB.

Acceptable acoustic impedance

The lowest impedance of the loudspeakers of the speaker system, with which the amplifier is able to work normally. The nominal impedance of the speakers, also referred to as the term "impedance", is one of the key parameters in the selection of audio system components: for normal operation, it is necessary that the speaker impedance match the characteristics of the amplifier. If the speaker impedance is greater, the sound volume will decrease significantly, if it is less, distortion will appear in it, and in the worst case, even overloads and breakdowns are possible. Therefore, in the characteristics of receivers, it is usually the minimum resistance that is indicated — after all, connecting a load of too low impedance is fraught with more serious consequences than too high.

Frequency range

The range of sound frequencies that the receiver is capable of outputting (this parameter can also be specified for models without their own amplifier, see “Number of channels” for more details). The completeness of the transmitted sound depends on this parameter; of course, the sound quality in general is highly dependent on a number of other factors (for example, frequency response), but the wider the frequency range, the less risk that the amplifier will completely “cut off” some part of the sound. On the other hand, it should be taken into account here that the normal hearing range of the human ear is approximately 16 – 20,000 Hz, and deviations from these limits are rather small. And although many modern receivers provide a much wider frequency range, however, this is more of a marketing ploy than a really significant indicator (or some kind of "side defect" in the design of a high-quality amplifier).

It is also worth considering that in order to reproduce the full frequency of the amplifier, you will need speakers with the appropriate characteristics.

Bi/Tri-amping

The ability of the receiver to work in Bi-amping and/or Tri-amping mode.

The basic principle of both of these modes is that the audio signal is divided into several frequency bands (LF and HF for Bi-amping, in the case of Tri-amping, mid frequencies are separated separately), and each band is processed by its own amplifier and output to its own specialized set of speakers. . In this way, a noticeable improvement in sound quality can be achieved. However, note that the specific implementation of this function in AV receivers may be different. The simplest option involves two or three built-in power amplifiers, each of which outputs the entire audio range to its own set of connectors. To such a device, you need to connect an external crossover (frequency filter) or speakers with built-in filters for each frequency band. More advanced receivers may have their own built-in crossovers, in which case only part of the frequency range is output to each amplifier with a set of connectors; this eliminates the need for external frequency filters. However, anyway, to use Bi/Tri-amping, you will need speakers that support this connection format.

Tuner and playback

AM/FM radio. The presence of a built-in tuner that allows you to receive AM and FM radio broadcasts without additional devices (except perhaps an antenna is required, and then not always). In FM, it is possible to realize the transmission of high-quality stereo sound, however, the waves propagate only within the line of sight (10-20 km); therefore, most of the stations in this range are classified as "urban music". In AM, the transmission range is already measured in hundreds of kilometers, but the sound quality is noticeably lower; therefore, such stations usually specialize in talk programs (particularly news).

USB stick. The ability to connect a USB drive to the receiver — for example, a "flash drive" or an external hard drive — and play content from it directly. This requires a USB connector. Most often, in models with this function, it is located on the front panel (see below) — this provides ease of connection; at the same time, there are exceptions. Also note that the very presence of USB does not necessarily imply the possibility of playing from external media — this interface can be used for service purposes, for example, to update the firmware or play from a PC (see "Advanced (inputs) — USB Type B").

Network audio streaming. The ability to play streaming audio over a local network or the Internet (including from services like Grooveshark o...r Last.Fm). The name "streaming" is due to the fact that each song is played directly from the network, without being written to the receiver's own permanent storage. This function, by definition, requires connection to computer networks; most often, a Wi-Fi module is used for this purpose (see "Interfaces") or a LAN connector.

— Internet radio. The ability to use the receiver to receive and play Internet radio broadcasts. This feature is similar in many ways to the network audio described above — in particular, it requires a network connection to work, and the data is streamed; however, in the case of network audio, the user himself chooses what and when to listen, here the broadcast is similar to conventional radio transmissions and is controlled from the radio station. Actually, many major stations broadcast their programs not only on the traditional air, but also via the Internet; There are also specialized projects broadcasting only on the Web. In general, the choice of programs is much more extensive than for conventional radio broadcasting — after all, Internet radio has no range restrictions. And the receivers themselves may provide additional tools for managing such broadcasting — for example, catalogs, search by genres, languages, etc.

Streaming services

A set of streaming services supported by the AV receiver.

Such services are designed for streaming audio content over the Internet. In this case, the files are not saved to the device, but are played directly from the corresponding resource on the global network. Streaming services allow you to access vast libraries of music without having to take up your device's internal storage. The key advantages of online streaming include a huge selection of content and almost instant access to the desired audio tracks. Popular ones include Amazon Music, Deezer, SoundCloud, Spotify, TIDAL, YouTube Music.

Playable formats

Audio and video file formats that the receiver is capable of playing on its own. Models with player features generally support most popular media file types (particularly AVI, MPEG and MKV for video, MP3, WAV and WMA for audio), but the file set may have its own peculiarities. This item allows you to find out.

Interfaces

- AirPlay. Technology for transmitting multimedia data via a wireless connection ( Wi-Fi). Developed by Apple, it is intended mainly for broadcasting content from various Apple devices (primarily portable gadgets) to compatible external devices. Allows you to transfer audio files (in audio streaming mode, see “Tuner and playback” for more details), as well as images, text data and even video. The presence of AirPlay in the receiver will allow you to connect Apple equipment with support for this technology to it for direct playback, as well as display information about files on an external screen (for example, a TV) - song name, artist name, etc.

- AirPlay 2. The second version of the AirPlay technology described above, released in 2018. One of the main innovations introduced in this update was support for the multi-room format - the ability to simultaneously broadcast several separate audio signals to different compatible devices installed in different locations. Thus, you can, for example, turn on the next episode of your favorite series from your iPhone on the TV in the living room, and relaxing music from your iPod in the kitchen, etc. In addition, AirPlay 2 received a number of other improvements - improved buffering, the ability to stream to stereo acoustics, as well as support for voice control via Siri.

- Chromecast.... Original name: Google Cast. Technology for broadcasting content to external devices, developed by Google. Allows you to transmit video and audio from a PC or mobile device to the AV receiver; broadcasting is usually carried out via Wi-Fi, while the receiver and the signal source must be on the same Wi-Fi network (with the exception of Chromecast media players). Chromecast technology supports two modes - actual broadcasting through special applications (available for Windows, macOS, Android and iOS) and “mirroring” content opened in the Google Chrome browser on an external screen.

- Wi-Fi. A wireless interface used primarily for building computer networks. Accordingly, AV receivers may need its presence primarily to implement network functions - streaming audio, Internet radio (see “Tuner and playback”), AirPlay (see above), DLNA (see below). Connecting to computer networks can also be done through a wired LAN interface(see below), but Wi-Fi is more convenient due to the absence of wires and the ability to work through obstacles (including walls) at a distance of several tens of meters. In addition, in some models, this technology can also be used to communicate directly with other devices - for example, to use a smartphone or tablet as a remote control, or to broadcast live video using Miracast technology or another similar format.

Bluetooth. Direct wireless communication technology between various electronic devices; operates at a range of about 10 m, although some specific operating formats provide a longer range. Technically, it can be used for different purposes, depending on the protocols supported by a particular device; In AV receivers, two protocols are most often found - A2DP for wireless broadcasting of audio signals and AVRCP for remote control. In the first case, we are usually talking about transmitting a signal from an external device (smartphone, laptop, etc.) to the receiver; theoretically, the opposite option is also possible - broadcasting sound to Bluetooth headphones or acoustics, however, for a number of reasons, this format of operation is almost never found in AV receivers. AVRCP, in turn, allows you to use an external gadget (for example, the same smartphone) as a remote control.

- LAN. A standard interface for wired connection of various equipment (including AV receivers) to computer networks, incl. to access the Internet. Due to the presence of a wire, it is less convenient to connect than the Wi-Fi described above. On the other hand, a LAN connection wins in terms of connection reliability and actual data transfer speed - especially if there are many wireless devices on the network and Wi-Fi channels are busy (which is often the case, since Wi-Fi modules are very popular in modern electronics ). Therefore, for working with large volumes of data - for example, watching high-definition video via DLNA (see below) - LAN is better suited.

— RS-232. A wired interface that originally appeared in computer technology. In AV receivers, it can be called a service connector: content is not transmitted through this connector, but through it you can connect the device to a computer and remotely change settings, as well as update the firmware.

— MHL. High-speed wired interface for transmitting multimedia data (video and audio) from mobile devices to external screens. The bandwidth allows you to work with high or even ultra-high resolution images, as well as multi-channel audio. Also, when connected, the gadget can be charged. In mobile devices, the MHL signal is output via a standard microUSB port; and the role of the input in AV receivers (and other stationary equipment) is played by the HDMI connector (see below) - however, not every connector, but only one that is initially compatible with MHL and has the appropriate marking. Adapters are available for connecting to regular HDMI, but additional functions (like charging) may not be available with this connection.

- DLNA. A technology used to connect various electronic devices into a single digital network with the ability to directly exchange content. Devices for which support for this standard is declared are able to communicate effectively regardless of the manufacturer. An AV receiver with DLNA can, for example, play a movie directly from the hard drive of a computer in the next room, or transfer photos from a smartphone to the TV. Connecting to the Network can be done either wired (LAN) or wirelessly (Wi-Fi, see above).

- Roon Tested. Roon Tested accreditation means the AV receiver is compatible with the popular audiophile music streaming platform Roon. Certified models have undergone a series of tests and meet the quality standards required to operate Roon flawlessly. This ensures convenient management and organization of content within the platform.

— Coordination of Remote control. A function that allows you to connect the AV receiver to another device (for example, a Blu-ray player or external amplifier) and control both devices with one remote control. When purchasing equipment with such a function, it is necessary to clarify compatibility - as a rule, only equipment from one manufacturer can work in such a “bundle”, and even in such cases, their own nuances are possible upon agreement.

— Voice assistant. Receiver support for voice assistant. The most popular assistants these days are:
  • Google Assistant
  • Apple Siri
  • Amazon Alexa
However, other solutions may also emerge. In any case, it is worth noting that we are not talking about an assistant built into the receiver itself, but about compatibility with external devices that have this function (for example, a smartphone or tablet). But even such compatibility allows you to give commands to the receiver by voice - this is often more convenient than more traditional control methods. The specific set of supported commands and languages may vary depending on the voice assistant and its specific version.

Decoders

A decoder can be broadly described as a standard in which digital audio (often multi-channel) is recorded. For normal playback of such sound, it is necessary that the corresponding decoder is supported by the device. The first signs of multi-channel decoding were Dolby Digital and DTS, gradually improving and introducing new features. The final stage for 2020 is Dolby Atmos and DTS X decoders. And the intermediate ones were Dolby TrueHD, Dolby Pro Logic II, DTS-HD, DTS ES, DTS Neural: X, DTS Neo (6, X).

Dolby Atmos. A decoder that does not use a rigid distribution of sound across channels, but the processing of audio objects, due to which it can be used with almost any number of channels on a reproducing system — the sound will be divided between channels so that each audio object is heard as close as possible to its proper place. When using Dolby Atmos, in-ceiling speakers (or speakers facing the ceiling) are highly desirable. However, in extreme cases, you can do without them.

— DTS X . An analogue of the Dolby Atmos described above, when the sound is distributed not through individual channels, but through audio objects. The...digital signal contains information about where (according to the director's intention) the object audible to the user should be and how it should move, and the processor of the reproducing device processes this information and determines exactly how the sound should be distributed over the available channels in order to achieve the required localization. Thanks to this, DTS X is not tied to a specific number of audio channels — there can be as many as you like, the system will automatically divide the sound into them, achieving the desired sound. Also note that this decoder allows you to separately adjust the volume of dialogues.

IMAX Enhanced. The IMAX Enhanced Mark of Conformity is awarded to equipment that meets the audio certification requirements of IMAX Corporation. Combined with DTS audio technology to deliver signature IMAX theater-like sound in the home. The most accurate reproduction of such audio is possible in systems with a large number of channels (5.1 or more). Note that for a fully immersive experience, IMAX Enhanced certification must also apply to video equipment for playing content (TV, projector, etc.).

XLR (balanced)

The number of balanced XLR inputs provided in the design of the AV receiver.

The XLR connector itself has several varieties and can be used for different signal transmission formats. However, in this case, a three-pin plug of a characteristic round shape is used, and the audio signal is transmitted through it in an analogue format. The peculiarity of a balanced connection is that the role of the noise filter in this case is played by the cable itself. This allows you to get a clean signal with a minimum of distortion, even with long wire lengths. Thanks to all this, the XLR interface is considered professional, it is used even in advanced studio equipment. And in AV receivers, the presence of such a connection indicates a high class device, even by the standards of Hi-Fi and Hi-End equipment (although XLR is not used in all high-end models).

In modern electronics, a pair of balanced XLR connectors is usually provided. This is due to the fact that only one channel of sound can be transmitted through one connector; thus, 2 jacks are needed for a stereo signal. However, XLR connectors, unlike RCA (see below), are often counted in pieces rather than in pairs; this is due to the fact that this interface is often used in multichannel sound systems, and there is no particular need to bind the counting to two stereo channels. The same counting principle is used in our catalog.

RCA

The number of analogue stereo RCA inputs provided in the design of the AV receiver. The more such inputs there are, the more transmitting devices can be simultaneously connected to the receiver. Thanks to this, when choosing between them, you do not have to reconnect cables — just set the signal source in the receiver settings.

By itself, the RCA connector (colloquially — "tulip") can be used in different interfaces. However, in this particular case, we are talking about a linear audio input responsible for an analogue audio signal. RCA is the most popular connector used in modern audio equipment for such inputs; it allows you to connect the receiver to an external audio source such as a CD player.

Note that connectors of this type are usually counted in pairs; in other words, one input consists of two RCA connectors. This is due to the fact that in this case only one channel of analogue audio can be transmitted over one wire; accordingly, two RCA jacks are required for stereo transmission.

Coaxial S/P-DIF

The number of coaxial inputs provided in the design of the receiver.

The coaxial interface is used to transmit audio in digital format. In fact, this is a kind of S / PDIF interface that uses an electric coaxial cable with RCA connectors (“tulip”) for connection. Do not confuse this interface with the analogue RCA described above: the coaxial connection differs in signal type, in the number of jacks per connector (one is enough here), and also does not work well with a regular RCA cable (preferably shielded). S/P-DIF bandwidth is enough to transmit multi-channel audio up to 7.1(see "Number of channels"), but lossless formats like Dolby TrueHD or DTS-HD Master Audio(see "Decoders") are not supported.

As for the quantity, the presence of several inputs allows you to connect several signal sources to the receiver at once with the corresponding outputs and switch between them through software settings without fiddling with switching cables.

Optical

The number of optical inputs provided in the design of the receiver.

The optical interface allows digital audio to be transmitted and is in fact a variation of the S/PDIF standard using a fiber optic data link (TOSLINK cable). In terms of bandwidth, it is completely similar to the coaxial interface (see above) — in particular, it supports multi-channel audio — however, it compares favorably with its complete insensitivity to electromagnetic interference. On the other hand, due to their design, optical cables are sensitive to sharp bends and mechanical stress — accidentally stepping on such a cable can make it unusable. In addition, they have a maximum length limit of about 6.1 m.

As for the quantity, the presence of several inputs allows you to connect several signal sources to the receiver at once with the corresponding outputs and switch between them through software settings without fiddling with switching cables.

HDMI

The number of HDMI inputs provided in the design of the receiver.

This interface is one of the most advanced digital standards used in modern electronics. It was originally developed for HD television and already in the first version it allowed to transmit a video signal with Full HD (1920x1080) resolution, accompanied by eight-channel (7.1, see "Number of channels") sound; in the future, the maximum resolution increased even more. Almost all modern TVs, monitors and plasma panels have at least one HDMI interface, the same applies to playback devices (players, media centers, etc.).

As for the quantity, the presence of several inputs allows you to connect several signal sources to the receiver at once with the corresponding outputs and switch between them through software settings without fiddling with switching cables. In the case of HDMI, the abundance of connectors is especially important, given the prevalence of this standard in modern video equipment; in some receivers, the number of such inputs can be up to 10.

HDMI version

HDMI interface version supported by the receiver. Usually, all HDMI connectors available in the device correspond to this version — both inputs (see above) and outputs (see below). Here are the current options:

— v 1.4. The oldest of the current versions, released in 2009. However, it supports 3D video capable of working with resolutions up to 4096x2160 at 24 fps, and in Full HD resolution, the frame rate can reach 120 fps. In addition to the original v.1.4, there are also improved modifications — v.1.4a and v.1.4b; they are similar in terms of basic features, in both cases the improvements affected mainly work with 3D content.

-v 2.0. Significant update to HDMI introduced in 2013. In this version, the maximum frame rate in 4K has increased to 60 fps, and the audio bandwidth has increased to 32 channels and 4 separate streams simultaneously. Also from the innovations, we can mention support for the ultra-wide format 21:9. In the v.2.0a update, HDR support was added to the interface capabilities, in v.2.0b this feature was improved and expanded.

— v 2.1. Despite the similarity in name to v.2.0, this version, released in 2017, was a very large-scale update. In particular, it added support for 8K and even 10K at speeds up to 120 fps, as well as further expanded the possibilities for working with HDR. Under this version, its own cable was released — HDMI Ultra High Speed, all v.2.1 features are available only when using cables of this standard,...although basic functions can be used with simpler cords.

Composite

The number of composite inputs provided in the design of the receiver.

Note that in this case, we do not mean a full-size composite interface that uses three sockets (video and two stereo sound channels), but only one connector — video. This is due to the fact that the sound can be output through standard RCA audio connectors. The video output also uses an RCA type connector, usually a characteristic yellow colour.

Due to the fact that all image data is transmitted over a single cable, the composite interface is somewhat inferior to the component (see above) in terms of video quality, and the bandwidth allows you to work only with a standard definition signal (not HD); and there is no talk of volumetric sound. On the other hand, this connection method has long been used in video technology and can be useful for connecting outdated devices (such as VHS VCRs).

As for the quantity, the presence of several inputs allows you to connect several signal sources to the receiver at once with the corresponding outputs and switch between them through software settings without fiddling with switching cables.

Component

The number of component inputs provided in the design of the receiver.

This interface (also known as YPbPr) is designed to transmit analogue video. Its name comes from the fact that the three main video components (brightness data and two colour difference channels) are carried over three separate cables. Accordingly, each individual component input is a set of three connectors. Usually, a built-in cable with RCA connectors (“tulip”) is used for connection, while the cables for component and composite (see below) interfaces are quite interchangeable.

The component interface stands out for its high signal transmission quality: splitting the video into three separate channels significantly reduces distortion compared to the same composite format, and the bandwidth is comparable to the above-described HDMI and allows you to work even with HD video. However, a component connection does not provide audio, and you will need to use a separate cable for this purpose.

As for the quantity, the presence of several inputs allows you to connect several signal sources to the receiver at once with the corresponding outputs and switch between them through software settings without fiddling with switching cables.

S-Video

The number of S-Video inputs provided in the design of the AV receiver.

The S-Video interface is used to transmit analogue video. In this case, one cable and one connector is used for connection, however, the signal is transmitted through two separate channels. As a result, this interface is superior in signal quality to a composite connection using 1 channel, but loses to a three-channel component connection (see above). And for HD-video, this type of connection is not suitable.

As for the quantity, the presence of several inputs allows you to connect several signal sources to the receiver at once with the corresponding outputs and switch between them through software settings without fiddling with switching cables.

Phono

The presence of the Phono input in the design of the AV receiver.

This type of input is used to connect turntables. Despite the widespread popularity of digital media, classic vinyl records do not leave the scene. And it's not just a matter of nostalgia: many audiophiles believe that it is the record that provides the most authentic and complete sound, which is why turntables for vinyl are quite often found in high-end audio systems. However, the sound from such a player must be passed through a phono stage, otherwise there can be no question of any quality. For these purposes, in high-end equipment, including AV receivers, the Phono input is provided: the signal received at this input is fed to the built-in phono stage. This allows you to connect turntables directly, without additional external equipment.

Note that phono stages can be designed for different types of pickups — MM or MC; therefore, before connecting, check to see if the Phono input is compatible with your turntable's cartridge. However, many receivers with this function are equipped with a universal MM/MC phono stage.

Multichannel

The presence of a multi-channel input in the design of the AV receiver.

This interface uses the same connectors and the same audio transmission format as analogue RCA (see "RCA"). However, the connectors themselves in this case are much larger: their number corresponds to the maximum number of audio channels that the receiver supports (see above). For example, in a 7.1 model, the multi-channel input will consist of 8 jacks. This feature provides additional convenience in connecting and setting up multi-channel audio.

USB B

The presence of a USB B connector in the design of the AV receiver.

This type of USB is used to connect the receiver to a computer as a peripheral device (USB slave). Options for such an application may be different, depending on the model of the receiver and the software used. One of the most popular options is to transmit sound to an external speaker system: the signal from the PC enters the receiver, is processed by the audio processor, and then transmitted to the speakers connected to the receiver. This can provide a much higher sound quality than direct connection of the speakers to the computer's audio outputs, and there are more options for setting the sound; in addition, even a computer that does not have a sound card can be “voiced” in this way. Other ways to use USB B include remote control of receiver settings, firmware updates, etc.

Control input (IR)

The presence of a control input in the design of the AV receiver.

This input allows you to connect an external IR receiver for the remote control to the receiver. The role of such a receiver can be played either by a separate module or by another component of the audio system that has a control output - for example, an amplifier or a player (however, when building such systems, it's ok to clarify the compatibility of the components). Anyway, with the right placement, the external receiver will allow you to use the remote control even in those places where the signal from the remote control would not reach the receiver's built-in sensor - for example, in another room.

More features

Additional inputs provided in the design of the AV receiver, in addition to those described above. These can be, in particular, such interfaces:

— Balanced digital (AES/EBU). A professional interface designed, as the name suggests, for transmitting digital audio using a balanced connection to reduce interference. For balanced connection, see "XLR (balanced)" above; here we note that AES / EBU is not compatible with the "regular" XLR, although it most often uses the same type of connector. This input is found mainly in the most advanced AV receivers.

— Connector for the docking station. Input for connecting to a docking station — a special device used mainly for connecting smartphones and portable players. The most popular docks for Apple devices — iPhone and iPod — but there may be accessories for other brands. A docking station is often more convenient than a regular cable as it She also plays the role of a stand. In addition, connecting a portable gadget in this way often provides additional control options — for example, switching tracks on the player from the receiver's control panel.

— Trigger input. This input allows the AV receiver to turn on automatically when another audio component equipped with a trigger output, such as a CD player, is turned on. When the control component connected to the trigger input is turned on, this input receives a signal that “wakes up” the receiver as well. This is more convenient than turning on the...equipment separately.

— PC IN. Input for outputting video signal from a computer graphics card to the AV receiver. Typically, the designation PC IN is used for the analogue VGA connector (15 pin D-Sub); it is considered obsolete, but it is still quite common in video cards, especially low-cost ones. On the other hand, the same video cards use the more popular, advanced, and most importantly universal HDMI standard (see above). Therefore, among AV receivers, the PC IN input is still not widely used, only some top-class models are equipped with it, designed for the maximum variety of interfaces.

— USB A. Standard USB connector — the same as in PCs and laptops. It can be used in different formats, but most often it is intended for connecting flash drives or other drives and using the receiver as a media player.

XLR (balanced)

The number of balanced XLR outputs provided in the design of the AV receiver.

The XLR connector itself has several varieties and can be used for different signal transmission formats. However, in this case, a three-pin plug of a characteristic round shape is used, and the audio signal is transmitted through it in an analogue format. The peculiarity of a balanced connection is that the role of the noise filter in this case is played by the cable itself. This allows you to get a clean signal with a minimum of distortion, even with long wire lengths. Thanks to all this, the XLR interface is considered professional, it is used even in advanced studio equipment. And in AV receivers, the presence of such a connection indicates a high class device, even by the standards of Hi-Fi and Hi-End equipment (although XLR is not used in all high-end models).

In modern electronics, a pair of balanced XLR connectors is usually provided. This is due to the fact that only one channel of sound can be transmitted through one connector; thus, 2 jacks are needed for a stereo signal. However, unlike RCA (see below), XLR connectors are usually counted in pieces, not in pairs.

RCA

The number of analogue stereo RCA outputs provided in the design of the AV receiver.

By itself, the RCA connector (colloquially — "tulip") can be used in different interfaces. However, in this particular case, we are talking about a linear audio output that is responsible for an analogue audio signal. RCA is the most popular connector used in modern audio equipment for such outputs. In this case, we can talk about both standard outputs for connecting speakers, and about REC connectors designed to connect a recording device to the receiver and differ in a constant signal level. (however, there is rarely more than one such output). In addition, preamplifier outputs are also taken into account here.

Note that connectors of this type are usually counted in pairs; in other words, one output consists of two RCA connectors. This is due to the fact that in this case only one channel of analogue audio can be transmitted over one wire; accordingly, two RCA jacks are required for stereo transmission.

Several RCA outputs allow you to connect several sets of acoustics to the receiver at the same time — for example, to broadcast sound in several rooms at once or to record sound in parallel with listening to it.

Coaxial S/P-DIF

The number of coaxial outputs provided in the design of the receiver.

The coaxial interface is used to transmit audio in digital format. In fact, this is a kind of S / PDIF interface that uses an electric coaxial cable with RCA connectors (“tulip”) for connection. The bandwidth of this interface is enough to transmit multi-channel audio up to 7.1 (see "Number of channels"), but lossless formats like Dolby TrueHD or DTS-HD Master Audio (see "Decoders") are not supported.

The presence of several outputs allows you to connect several signal receivers at the same time and select a playback device without reconnecting cables — by changing the settings of the receiver. And in models that support Multi Zone (see above), you can simultaneously broadcast different signals to different receivers.

Optical

The number of optical outputs provided in the design of the receiver.

The optical interface allows digital audio to be transmitted and is in fact a variation of the S/PDIF standard using a fiber optic data link (TOSLINK cable). In terms of throughput, it is completely similar to the coaxial interface (see above), but it compares favorably with its complete insensitivity to electromagnetic interference. On the other hand, due to their design, optical cables are sensitive to sharp bends and mechanical stress — accidentally stepping on such a cable can make it unusable. In addition, they have a maximum length limit of about 6.1 m.

The presence of several outputs allows you to connect several signal receivers at the same time and select a playback device without reconnecting cables — by changing the settings of the receiver. And in models that support Multi Zone (see above), you can simultaneously broadcast different signals to different receivers.

HDMI

The number of HDMI outputs provided in the design of the receiver. The presence of several outputs allows you to connect several signal receivers at the same time (in the case of HDMI, these can be, for example, TVs or monitors) and select a playback device without reconnecting cables — by changing the settings of the receiver. And in models that support Multi Zone (see above), you can simultaneously broadcast different signals to different receivers.

HDMI is one of the most advanced digital interfaces used in modern electronics. It was originally developed for HD television and already in the first version it allowed to transmit a video signal with Full HD (1920x1080) resolution, accompanied by eight-channel (7.1, see "Number of channels") sound; in the future, the maximum resolution increased even more. Almost all modern TVs, monitors and plasma panels have at least one HDMI interface, the same applies to playback devices (players, media centers, etc.).

Composite

The number of composite outputs provided in the design of the receiver.

Note that in this case we do not mean a full-sized composite interface that uses three jacks (video and two channels of stereo sound), but only one connector — video (sound can be output through standard RCA connectors). The video output also uses an RCA connector, usually a distinctive yellow colour.

Due to the fact that all image data is transmitted over a single cable, the composite interface is somewhat inferior to the component (see above) in terms of video quality, and the bandwidth allows you to work only with a standard definition signal (not HD); and there is no talk of volumetric sound. On the other hand, this connection method has long been used in video technology and can be useful for connecting outdated devices (such as VHS VCRs).

The presence of several outputs allows you to connect several signal receivers at the same time and select a playback device without reconnecting cables — by changing the settings of the receiver. And in models that support Multi Zone (see above), you can simultaneously broadcast different signals to different receivers.

Component

The number of component outputs provided in the design of the receiver.

This interface (also known as YPbPr) is designed to transmit analogue video. Its name comes from the fact that the three main video components (brightness data and two colour difference channels) are carried over three separate cables. Accordingly, each individual component input is a set of three connectors. Usually, a built-in cable with RCA connectors (“tulip”) is used for connection, while the cables for component and composite (see below) interfaces are quite interchangeable.

The component interface stands out for its high signal transmission quality: splitting the video into three separate channels significantly reduces distortion compared to the same composite format, and the bandwidth is comparable to the above-described HDMI and even allows you to work with HD video. However, a component connection does not provide audio, and you will need to use a separate cable for this purpose.

The presence of several outputs allows you to connect several signal receivers at the same time and select a playback device without reconnecting cables — by changing the settings of the receiver. And in models that support Multi Zone (see above), you can simultaneously broadcast different signals to different receivers.

S-Video

The number of S-Video outputs provided in the design of the AV receiver.

The S-Video interface is used to transmit analogue video. In this case, one cable and one connector is used for connection, however, the signal is transmitted through two separate channels. Thus, this interface is superior in signal quality to a composite connection using 1 channel, but loses to a three-channel component connection (see above). And for HD-video, this type of connection is not suitable.

The presence of several outputs allows you to connect several signal receivers at the same time and select a playback device without reconnecting cables — by changing the settings of the receiver. And in models that support Multi Zone (see above), you can simultaneously broadcast different signals to different receivers.

On headphones

Type of headphone output installed in the receiver.

- 3.5 mm (mini-Jack). This connector is very popular in modern electronics: in portable devices, it is the main option for connecting headphones, and most headphones themselves (of all price categories) have a “native” plug specifically for mini-Jack. However, due to a number of technical features in Hi-Fi and Hi-End technology, including AV receivers, this interface has not received wide popularity.

- 6.35 mm (Jack). Due to its large size, this connector is used mainly in stationary equipment and is almost never found in portable gadgets. On the other hand, it is better suited for high-quality audio systems than a mini-Jack, many premium headphones come with a Jack plug, and models with a 3.5 mm plug can be connected to a 6.35 mm jack using a simple adapter (often it is even included in the kit). with the headphones themselves). As a result, most modern AV receivers use this interface.

Preamplifier (Pre-Amp)

The presence of a preamplifier output (Pre-Amp) in the design of the AV receiver.

The preamp itself is the first stage of analogue signal amplification: it increases the power of the signal to a line level. This level is not enough to sound passive speakers, but it is already enough to send a signal to a power amplifier. However, in this case, not all preamplifier outputs are implied: ordinary paired stereo outputs are indicated as RCA pairs (see above), and only the so-called Pre-Amp counts as Pre-Amp. multichannel output. This output also uses RCA connectors, but these connectors cover all channels supported by the receiver: for example, in a 5.1 device, the Pre-Amp output will consist of 6 connectors. Such an interface can be very convenient when organizing multi-channel sound systems.

Control output (IR)

The presence of a control output (IR) in the design of the AV receiver.

The control output provides control signals to the input of another component in the audio system, such as an amplifier. In fact, the receiver with the device connected to the control output turns into an external IR sensor for this device. This can be useful if the controlled component is installed in a hard-to-reach place where the signal from the remote control does not reach. However it must be borne in mind that the very presence of such inputs and outputs does not guarantee the compatibility of various devices, especially if they are released by different manufacturers; Sharing details should be clarified in the official documentation.

Trigger output

The number of trigger outputs provided in the design of the receiver.

The trigger output is used to automatically turn on other audio system components connected to the receiver. When the receiver itself is turned on, a control signal is sent to this output, which “wakes up” the connected device (for example, an external amplifier) and relieves you of the need to turn it on manually. Of course, to use this function, such a device must be equipped with a trigger input.

See "HDMI" above for the meaning of the number of any outputs.

More features

The number and type of outputs provided in the design of the receiver and not described in the paragraphs above. These can be, in particular, such connectors:

— Subwoofer. Dedicated subwoofer output — usually in the form of an RCA connector. Most often it uses a linear signal format, so it will require either an external amplifier or an active subwoofer (with a built-in amplifier) to work. This output differs from conventional linear RCAs in that only the working range of the “sub” is fed to it — low frequencies. This simplifies the connection and has a positive effect on quality.

— AES/EBU. A professional digital audio transmission format, most often in a balanced format. Recall that in this format, at least three wires are used for transmission (instead of two), and the signal itself is processed in such a way that external interference induced on the cable is extinguished by itself. This allows long wire lengths to be used without sacrificing quality. However, there are also unbalanced varieties of AES/EBU. The connectors used can also be different: the default is a three-pin XLR, but there are options with coaxial BNC, and even with a 25-pin DB25, where one connector is responsible for several outputs at once (up to 8).

— VGA. Analogue video interface; It can work without restrictions with resolutions up to 1280x1024, does not differ in noise immunity and does not provide sound transmission, in the light of which it is considered obsole...te. However, this type of input is still found on some TVs and monitors, and is fairly common on projectors and some specific video equipment. Therefore, among AV receivers there are models with VGA outputs.

— SCART. The plug has a characteristic rectangular shape and large dimensions, the largest used in consumer video equipment. SCART does not have its own data format, various types of signals can be transmitted through it — mainly analogue: component video, composite video + audio, S-Video, etc. You can find appropriate adapters on the market, and it is also possible to connect SCART — SCART.

— REC output. A special kind of line (analogue) audio output: the signal level at this output always remains the same. This provides additional convenience when recording sound from the receiver.

— Power output 230 V. In fact, a socket on the receiver's case, which allows you to supply power through it to other components of the system. This connector is convenient in that it is often located closer than a conventional outlet; however, it may differ from it in design, but this issue can be solved with the help of an adapter. It is also worth considering that the power output usually has restrictions on the power of the connected load — for example, up to 100 watts.

Headphone output

The presence of a headphone jack on the front panel of the receiver (usually a standard 6.35 mm or 3.5 mm jack, for more details see the other paragraph “Headphone output” above). Connecting headphones to the jack located on the front panel is much easier than to the output on the side and especially the back of the receiver.

USB port

The presence of a USB port on the front panel of the receiver. The USB interface can be used both for connecting external media and direct content playback (see "Tuner and playback"), and for connecting the receiver itself to a computer as a peripheral device (see "USB Type B"). However, the first type of USB connector is usually placed on the front panel; this is very convenient for those who plan to often listen to music and watch videos from flash drives and other similar media.

HDMI input

HDMI input on the front panel of the receiver. This arrangement is much more convenient for connection than placement on the side or rear panel. For details on the interface itself, see the first of the "HDMI" items above.

Linear

The presence of a linear audio input on the front panel of the AV receiver.

The line interface is the main interface for transferring an analogue audio signal between audio system components. It can use different types of connectors, but most often classic RCA is installed on the front panel of the receiver. Another option is a 3.5 mm mini-jack; such a socket is useful for connecting portable equipment such as smartphones or pocket players. There are models equipped with both types of connectors. Anyway, the placement of the line input on the front panel will be especially convenient for connecting temporary sound sources that are not planned to be permanently connected to the receiver. For example, during a party, you can quickly connect a DJ console or a player with a selection of music to the system, and just as quickly disconnect the device at the end of the event.

Composite

The presence of a composite input on the front panel of the AV receiver.

A full-size composite interface is used to transmit video and audio signals in analogue format over three connectors; however, in this case, this term means only one connector — for video. For more information about this and the technical features of the composite input, see above. And on the front panel, this connector is installed for the same reasons as other interfaces — to provide additional convenience in connection.

Power consumption

The maximum power consumed by the receiver during normal operation. The power consumption of the device depends on this parameter, so if saving energy is crucial for you, you should pay attention to it. Also, information on power consumption is useful if you have doubts about the claimed characteristics of the built-in amplifier: if the total power of all channels is greater than the total power consumption of the receiver, then there is an error somewhere in the numbers.

Standby consumption

The power consumed by the receiver in standby mode. Most modern premium electronics, when “shut down” (from the remote control or control panel), do not turn off completely, but are put into standby mode — for a number of reasons this option is considered better than a complete shutdown. It requires electricity consumption, but it is usually very low. At the same time, if you plan to be away from home for a long time, for example, it is likely that from the point of view of economy it will be justified to turn off the power to the audio system completely.

Learning remote control

The presence in the delivery set of the receiver of the remote control with the possibility of "learning" — programming individual buttons at the request of the user. Due to this, you can customize the remote control to your own preferences instead of getting by with factory settings (which are not always optimal for different people).

Remote control with display

The presence of a display in the standard remote control of the receiver. Such a display can display a variety of service information (selected inputs and outputs, amplifier settings, etc.), which makes the use of the remote control more informative and greatly expands the control possibilities.

Smartphone control

Ability to control the AV receiver from a portable device. Note that this can be not only a smartphone, but also any other gadget that is compatible with a special control application — for example, a tablet. Connection with such a "remote control" is carried out via the wireless standard Wi-Fi or Bluetooth (see "Interfaces"). This allows you to control the device even through walls, while classic remote controls use the infrared channel and work only in the line of sight. In addition, the functionality of the control application can be almost unlimited, and the manufacturer can also update it by adding new features.
Filters
Price
from£ up to£ 
Brands
Colour
Device type
Number of channels
Power per channel
Impedance
Multimedia
Processor features
Inputs
Outputs
Front panel connectors
Decoder support
Streaming services
Release year
more
Depth
Height
Clear parameters